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ABSTRACT 

 

The formation and presence of second phase precipitates greatly influence the properties 

of metal alloys, and varies with alloy composition and temperature history.  In microalloyed steel, 

for example, precipitates may lead to beneficial grain refinement or detrimental transverse 

surface cracks. A comprehensive set of models has been developed to determine precipitate 

formation during metal processing. They include an equilibrium precipitation model and kinetic 

models for single-phase and multiphase precipitation, and are applied together with heat transfer, 

grain growth, and other models to predict precipitation and related microstructural parameters 

and properties during thermal processing of microalloyed steel.   

First, the equilibrium precipitation model predicts the equilibrium concentrations of 

dissolved elements and precipitated phases as a function of the steel composition and 

temperature, which is used to provide the supersaturation or driving force for the kinetic model. 

Next, a kinetic growth model based on population balance and Particle-Size-Grouping (PSG) 

method gives the volume fraction and size distribution of precipitates evolving with time. The 

method features geometrically-based thresholds between each size group, reasonable estimates 

of border values in order to accurately include intra-group and inter-group diffusion, and an 

efficient implicit solution method to integrate the equations. The kinetic model is generalized to 

predict multiphase precipitation to incorporate more realistic heterogeneous complex/mixed 

precipitates. The corresponding population balance and PSG equations are developed, including 

mutually-exclusive precipitates and mutually-soluble precipitates. From the results, an austenite 

grain growth model is applied to predict austenite size evolution under the influence of pinning 

precipitates.  

The three models are each extensively validated, including the equilibrium model 

matching with analytical solutions, the commercial package JMatPro, and experimental 

measurements of precipitate amounts, types and compositions. The kinetic models are validated 

by matching with exact solutions of the population balance equations, with each other for special 

cases, and with experimental measurements of precipitated fraction and size evolution, and a 

Precipitation-Temperature-Time diagram. 

By taking advantage of the temperature, phase-fractions, and segregated-composition 

histories from previous models, the models developed in this work are finally applied together to 
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predict precipitate formation and grain growth at different locations during continuous casting of 

steel slabs for realistic steel grades and casting conditions. The models track the evolution of the 

amount, composition, and size distribution of precipitates. In addition, austenite grain size, 

ductility and estimated susceptibility to transverse cracks, are expected to be explained by the 

microstructure of particle-containing materials in processes. The results are important to control 

steel grades and cooling practice to assure product quality, and present new insights into 

precipitate formation and transverse cracks during continuous casting.   

In this work, the nucleation, growth and coarsening are modeled as a continuous 

competing process, and all of the model parameters have physical significance and no fitting 

parameters are introduced. Although the current work focuses on precipitation in microalloyed 

steels, if the necessary database is available, the current models can be applied to simulate 

diffusion-driven precipitation in any materials and processes. 
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CHAPTER 1  

INTRODUCTION 

 

Many important properties of metal alloys, such as their mechanical strength, toughness, 

creep and corrosion resistance, magnetic and superconducting properties, ductility and related 

cracking problems, are greatly affected by the presence of second phase precipitate particles. 

These phenomena include the strengthening and embrittlement of steel, and precipitation 

hardening of nonferrous alloys. A fundamental understanding of the thermodynamics and the 

kinetics of precipitation reactions in metallic solids, resulting in an ability to predict the 

important microstructural features of precipitates, and their influence on material properties, is 

thus of great interest to materials researchers.  

Precipitates in alloys display a variety of different morphologies and size distributions, 

ranging from spherical, cruciform to needle shape, sizes from nm to µm and locations of inside 

the grains, on the grain boundaries or on dislocations, such as shown in Figure 1.1 [1-5]. The 

contribution of microstructure changes due to precipitate formation can have many different 

effects on material property. Large grain size decreases ductility and toughness, by allowing 

strain to concentrate at the grain boundaries to decrease strength and ductility. In addition to 

precipitation strengthening, a dispersion of fine precipitates can retard grain growth and 

recrystallization due to a pinning force to inhibit grain boundary movement, and thereby 

encourage grain refinement [6]. An unfortunate side effect is to decrease high temperature 

ductility and cause cracking, such as transverse cracks of microalloyed steel in continuous 

casting [7, 8]. If large numbers of fine precipitates accumulate along weak grain boundaries at 

elevated temperatures, they may cause a phenomenon called as precipitate embrittlement, in 

which voids and concentrated strains are produced near the grain boundaries to initialize and 

propagate the cracks [8]. There is a critical balance governing precipitate effects.  If the 

precipitates are very fine, they are beneficial to refine the grain size, but also likely to cause 

cracks. If they grow too large, they are less damaging to ductility, but may lose the ability to 

restrict grain growth, and will themselves cause quality problems by causing stress concentration 

and fatigue failure in final products.   

The composition, morphology, amount, spatial and size distribution of precipitates are all 

very important to alloy performance. The microstructure of mixed matrix and second phase 
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precipitates is, in turn, controlled by the alloy composition and temperature history in the process. 

The solubility of the precipitates always decreases with lowering temperature, so there is a 

critical temperature when precipitates start to form. The alloy composition affects the 

temperature range of precipitates formation and function, and the corresponding grain growth 

restriction and hot ductility decrease. A slower cooling rate generally increases the amount and 

size of precipitates, due to more time allowed for precipitation and coarsening. A lower ductility 

is expected for intermediate cooling rates when there is enough time for fine precipitates to occur, 

but not enough time for further growth or coarsening. Therefore it is important to control the 

alloy composition and cooling practice to produce optimal temperature and stress histories that 

avoid subjecting the material to high strains during those critical time periods when the grain size 

is large, embrittling precipitates are present and the alloy is susceptible to crack formation. 

 
1.1 Techniques for Characterizing Precipitate 

The experimental techniques for characterizing precipitates are abundant and still in rapid 

development. These methods measure the different properties of precipitates (spatial location, 

chemical composition, morphology, size distribution, and volume fraction), and have different 

resolution limits, sample preparation requirements and working conditions.  The spatial region 

measured ranges from very tiny regions (TEM) to the entire sample (macro-etching), and limits 

the precipitate size that can be detected.  The smallest detectable precipitate size can range from 

the atomic scale (for AFM) to micron scale, (for optical microscopy) and the sample usually 

must satisfy certain requirements of dimension (maximum size or thickness) and property 

(electrically conductive or not).  The required working conditions for the measurements range 

from vacuum (TEM) to ambient air, or even liquid environment (AFM). In order to accurately 

recognize and measure the existing precipitate properties and to efficiently simplify the sample 

preparation and operation cost, the technique must be chosen carefully. 

For an experimental technique to characterize precipitates for practical application, it 

must distinguish unambiguously if the precipitate-forming elements are in solid solution or in 

precipitate form. The method may be direct, by identifying and measuring the precipitates 

themselves, or indirect, by detecting a certain physical property change in the samples due to 

precipitate formation. The available direct and indirect methods for characterizing precipitates 

will be briefly introduced in the next two sections. Further details of the background, test 
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procedures, instrumentation, data acquisition and analysis methods can be found elsewhere [9-

28]. 

 
Direct Methods 

Direct methods to measure the properties of precipitates include the Energy-Dispersive 

X-Ray Spectroscopy (EDS or EDX) and X-Ray Diffraction (XRD) for precipitate composition, 

chemical extraction or related method for precipitate amount, Transmission Electron Microscopy 

(TEM), Scanning Electron Microscopy (SEM), Field Ion Microscopy (FIM), Scanning 

Tunneling Microscopy (STM), and Atomic Force Microscopy (AFM) for precipitate amount and 

size.  

The EDS/EDX or XRD techniques are mainly applied for chemical characterization and 

crystallographic structure of precipitates. When a focused X-ray beam interacts with regular, 

repeating planes of atoms, part of the beam is transmitted, part is absorbed by the sample, part is 

refracted and scattered, and part is diffracted. Each element has a unique atomic structure 

allowing X-rays that are characteristic of atomic structure to be identified uniquely from one 

another. EDS/EDX measures the number and energy of the emitted X-rays relative to lateral 

position on the sample [10], while XRD measures the intensity of the reflected radiation versus 

the detector angle to calculate the inter-atomic spacing and structure [11] based on Bragg’s law 

to identify the precipitate phase and composition.  

The chemical extraction method separates the precipitates by dissolving the metal matrix, 

and then determines the alloying element in the filtered residue. By choosing a suitable etchant, 

the metal matrix can be dissolved without dissolving the precipitates, and the insoluble 

precipitate particles are then separated through filtration and measured. The most commonly-

used chemical dissolution technique is that developed by Beeghly, which was first used to 

determine the nitrogen combined with aluminum in steel [12]. Electrochemical separation is also 

frequently used to get better extraction [13]. But these chemical methods are often criticized for 

the lack of sensitivity to small particles, of less than 10nm in size, and failure to isolate the 

elements that make up the different precipitates [12].  

Due to the relatively large wavelength (~380-780nm) and diffraction effect of visible 

light, the resolution of an optical microscope can not resolve less than 200nm.  The observation 

of nano-scale and even atomic scale microstructure became possible when the electron 
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microscope was developed. TEM is the most common method for characterizing precipitate size. 

Specimens for TEM must be prepared with very small thicknesses (~50-100nm) to allow 

electrons to transmit through them.  SEM allows thicker samples, but only the surface can be 

scanned and measured. Both techniques require a vacuum to avoid reactions such as oxidation. 

Because the wavelength of electrons is inversely proportional to the charged voltage, the highest 

resolution of TEM can reach ~0.2nm under very high voltage, which is around one order 

magnitude beyond that of SEM.  

FIM is the first microscope technique to fully achieve atomic resolution and to spatially 

resolve individual atoms at the surface of a sharp needle-sharp metal tip (<100nm radius). Atoms 

of filled imaging gas adsorbed on the tip are ionized by the strong electric field in the vicinity of 

the tip, and the positive charged gas ions are repelled perpendicularly away from the tip to hit a 

screen. The arrangement and chemical composition of individual atoms can be clearly discerned 

as bright dots on the image. Application of FIM is limited to materials which can be fabricated 

into a sharp tip, used in ultra-high vacuum environment and tolerates the high electrostatic fields.  

STM is the first well-accepted instrument to obtain real-time three dimension imaging 

based on quantum tunneling at the atomic level, due to its easy specimen preparation and few 

constraints of test material and environment. It can reach lateral resolution of 0.1nm and depth 

resolution of 0.01nm, and works in vacuum, air, water and various liquid or gas surroundings, 

and at temperatures ranging from near several kelvins to several hundred centigrade. The 

specimen for STM requires being extremely flat (<10nm variation in height), and precision of 

the scanning tip requires being extremely high to get accurate measurements. Similar to SEM 

and TEM, nonconductive specimens need to be coated with a conductive layer.  

In order to maintain atomic scale resolution and overcome the disadvantages of STM, a 

series of new probe microscope techniques have recently been developed. For example, AFM 

uses a cantilever with a mechanical probe at its end to replace the tunneling tip in STM. The tiny 

deflection of the cantilever that is caused by the atomic force between the specimen and tip is 

measured using a laser spot into an array of photodiodes, instead of the flow of tunneling current 

in STM. It can be used to distinguish individual atoms on the surface of any material and can 

handle nonconductive samples directly. In order to prevent collision between tip and surface, a 

constant distance or force is carefully maintained with feedback mechanism for these probe 

microscopy techniques. Example applications of TEM study on precipitation in Cu-Co alloy [14], 
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SEM study on coarsening of precipitates in Fe-Ni-Al alloy [15], FIM study on precipitation in 

Ti-Nb steel [16], STM study of precipitates in microalloyed steel [17] and AFM study of 

precipitates in aluminum alloy [18] are given elsewhere. 

 

Indirect Methods 

Direct methods are accurate but often very costly. The investigated volume is always 

limited to a volume on the order of a few thousand of nm3, so the measured properties may be 

highly local and provide no global information. The measurement of precipitate size distribution 

often requires a large number of data and heavy statistical treatment. The estimation of volume 

fraction of phases may be also tedious and inaccurate with local direct techniques. Instead, 

indirect methods can be used for global characterization, which spatially average the property 

changes in much larger samples, due to precipitate formation.  

The measured responses may be thermal (differential thermal analysis [18], differential 

scanning calorimetry [19]), electric (thermoelectric power [20], electrical resistivity [21]), 

magnetic (nuclear magnetic resonance spectroscopy [22]), mechanical (internal friction [23], 

peak strain measurement [24], stress relaxation [25], creep test [26]), or radiative (small angle 

neutron scattering [27], or small angle X-ray scattering [28]). 

Indirect measurement methods must be chosen carefully chosen, because the global 

properties may be influenced not only by precipitation, but also by recrystallization, dislocation 

networks and other evolving microstructure features. For these techniques, a reference sample 

without precipitation is always investigated together with the test samples, and the differences 

recorded, are attributed to the formation of precipitates. The results should be validated with 

direct measurements to prove their accuracy.    

Although intense work on experimental techniques to characterize precipitate formation 

in metal alloys has been conducted over many years, there is still no single accepted method 

which can unambiguous provide reliable and satisfactory quantitative analysis of all necessary 

properties of precipitates. Chemical methods, for example, may dissolve small precipitates, and 

thus underpredict their presence. Microscope methods, on the other hand, may miss rare large 

precipitates, owing to the small sample region measured.  It is better to combine several direct 

and indirect techniques together simultaneously to give a comprehensive picture of the 

precipitate characteristics.  
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1.2 Numerical Modeling of Precipitation and Grain Growth 

Considering the high cost and complexity of experimental techniques, numerical 

modeling is becoming an attractive alternative method for characterizing precipitates, which is 

much less expensive and easier to be applied. Moreover, after a numerical model has been 

validated with reliable experimental measurements, it is able to predict the behavior of a broad 

range of alternative materials or processing routes, for parametric investigation and optimization.  

A general schematic of microstructure modeling is shown in Figure 1.2. The temperature 

history of the process is first determined using a heat transfer model. Then an equilibrium model 

and a kinetic model give the corresponding equilibrium concentration, and the volume fraction, 

and size distribution of precipitate evolution with time. Then, a grain growth can be applied to 

simulate the grain size evolution of the alloy of interest including the effect of the precipitates. 

Finally, the material properties of interest are determined from the temperature, precipitate and 

grain size histories, considering the mixed matrix and precipitate microstructure. 

The temperature history is readily modeled by heat transfer models, which have been 

well developed in many commercial software packages, such as Abaqus [29] and Ansys [30], 

and by in-house codes for special-purpose processes, such as CON1D for continuous casting of 

steel. By correctly setting the boundary conditions and solving the transient heat conduction 

equation, computations at the macroscopic size scale can accurately give the temperature history.  

Equilibrium precipitation behavior is frequently determined by the minimization of Gibbs 

free energy. The Gibbs free energy continuously decreases when the system evolves, and 

approaches its minimum at equilibrium. This is well developed in CALPHAD methods 

(CALculation of PHAse Diagram), and is applied in commercial software packages, such as 

Thermo Calc [31, 32], FactSage [33], ChemSage [34], and JMatPro [35]. An alternative method 

for predicting equilibrium precipitation in a multi-component system is to simultaneously solve 

systems of equations based on solubility products, which represent the limits of how much a 

given precipitate can dissolve in the matrix [36]. Both methods have been proven to give good 

agreement with experimental measurements. 

Kinetic models predict the rate to approach the equilibrium state, and the corresponding 

evolution of the precipitated amount and size distribution. The phenomenon is governed by 

Fick’s equation for diffusion. Classical precipitation theory separates the precipitation process 

into nucleation [37], growth [38] and coarsening [39] stages. Random thermal diffusion creates 
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unstable clusters of chemically-bonded pseudomolecules called “embryos”, which grow into 

stable “nuclei” if they exceed a critical size to make the volume energy decrease exceed the 

surface energy increase. Just after nucleation, a high supersaturation causes particles of all size to 

grow, which defines the growth stage. Once the supersaturation has decreased to equilibrium, the 

larger particles are surrounded by low concentration, and can only grow by diffusion from the 

surrounding smaller particles, because of the shortage of free pseudomolecules the in matrix. 

Recently, numerical models of these stages have been developed, including kinetic Monte Carlo 

models [40-42], phase field methods [43-45], Matcalc [46-48], and cluster dynamics models [49-

51]. These models can be used to simulate precipitation as one continuous process, and are more 

fundamental because fewer assumptions are introduced.  

The thermodynamic driving force for grain growth is the decrease of total grain boundary 

area, which is directly related to the interfacial energy and curvature of the grain boundaries. 

When second phase precipitates exist, they may exert pinning forces to inhibit grain boundary 

movement and grain growth. A general equation to describe grain growth in metals and alloys in 

the presence of growing and dissolving precipitates was first suggested by Anderson and Grong 

[52], and this model is further used by Bernhard to predict the austenite grain size of 

continuously-cast steel slabs [53]. Good matches with measurements were found if the necessary 

parameters were well determined [53]. 

 

1.3 Crack Formation and Hot Ductility of Microalloyed Steel 

Precipitate formation in microalloyed steel is an important example to demonstrate the 

influence of precipitation on strength, ductility, toughness and weldability of metal alloys. 

Increasing demand for better steel properties continues to drive improvements in design and 

production of steel. With a good combination of microalloyed additions and thermomechanical 

processing, a set of desirable mechanical properties is attained through microstructure control. 

Microalloyed steel typically has a low carbon content (0.05-0.15 wt%), with up to 2% 

manganese, and small quantities of niobium, titanium, vanadium and aluminum (0.10wt% or 

less).  

Cracks have been observed at almost every conceivable location in cast steel sections as 

shown in Figure 1.3 [54]. In the interior, cracks can be seen near the corners, at the centerline or 

diagonally between opposite corners. On the surface, transverse and longitudinal cracks can 
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appear in both the center and corner regions. No matter the kind of crack, the fundamental terms 

related to its formation are the low ductility at high temperature region and an excessive applied 

operating stress or strain. 

Ductility is often measured from simple tensile tests and quantified by “reduction of area 

(RA)”. In general, the ductility of steel at elevated temperatures is excellent. However, there are 

at least three distinct temperature regions where ductility drops remarkably, as shown in Figure 

1.4 [55]. The first one appears at high temperatures around within 50oC of the solidus 

temperature. The ductility in this region is virtually zero and is responsible for hot tearing, which 

is caused by the presence of liquid film in the interdendritic regions that do not freeze until the 

temperature drops well below the solidus temperature. The microsegregation of sulfur and 

phosphorus residuals at solidifying dendrite interfaces lowers the local solidus temperature, and 

is most harmful on the ductility and solidification cracking sensitivity in this temperature range. 

The resulting fracture surface exhibits a smooth, rounded appearance, characteristic of the 

presence of a liquid film during failure [55, 56]. 

The second zone of low ductility in steel appears in the austenite temperature range of 

800oC to 1200oC. The low ductility around 1200oC is mainly attributed to the formation of MnS 

and FeS, and grain boundary decohesion due to segregation of sulfur.  Around temperature 

900oC, the low ductility is associated to the precipitation of AlN, BN or Nb(C,N) on austenite 

grain boundaries and the corresponding grain boundary sliding. Low ductility fractures are 

always intergranular along austenite grain boundaries, and lots of fine precipitates and ductile 

dimples around these precipitates are present. Due to the low temperature involved, the low 

ductility below 900oC is believed to only influence the formation of surface cracks [55, 56].  

The third low ductility zone occurs in the temperature range of 600-900oC when austenite 

transforms to ferrite, which is caused by an accelerated precipitation in ferrite and strain 

concentration in soft thin deformation-induced ferrite films around austenite grain boundaries. 

When most of austenite has been transformed to ferrite, because the ferrite is much softer with 

finer and more equiaxed grains than that of the austenite, strain distribution between austenite 

and ferrite becomes more uniform. Thus a recovery of good ductility is always observed at the 

end of transformation. Fractures surface are always characterized by intergranular failures, and 

often associated with void formation around fine precipitates [56].  
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The factors that directly influence hot ductility include precipitate formation, grain size 

and strain rate. Generally speaking, the ductility is lowered quantitatively with an increase of 

precipitate amount [57, 58]. The finer the precipitate size the worse is the ductility. Precipitates 

are proved to reduce ductility when they are smaller than 50nm in size, and likely to cause a 

reduction of area ~25% when their size is around ~10nm [57]. The precipitates on austenite grain 

boundary are more detrimental than those inside matrix, because they encourage void nucleation 

and growth either during grain boundary sliding or within ferrite films. Precipitate free zones are 

often observed adjacent to austenite grain boundaries, and may lead to strain concentration at 

these boundaries.  

Refining grain size can lead to improvement of ductility. Although the influence of 

precipitates and grain size on ductility often can not be clearly separated and distinguished, some 

tests on the precipitate-free steel proved that finer grain size causes reductions of both the depth 

and width of the high-temperature ductility trough [59]. This is possibly due to a decrease of the 

grain boundary sliding rate, or by the difficulty in propagation of grain boundary cracks formed 

on sliding through triple points of connecting grains. The minimum reduction of area is 

approximately proportional to D-1/2 for grain size less than 500µm [60]. 

An increase of strain rate is also beneficial to improve ductility. An increase of strain rate 

by an order of magnitude between 10-4 to 10-1 s-1 often increases the RA values by ~20%, and 

changes the fracture appearance from intergranular to ductile [61, 62]. These effects are maybe 

caused by reduced grain boundary sliding, insufficient time for strain-induced precipitation and 

formation of voids next to the precipitates and prevention of deformation-induced ferrite.  

The distinction between low ductility regions of steel is mainly determined by the 

stability of the different precipitates. Because of a relatively larger amount of manganese in 

microalloyed steel and the serious segregation of sulfur, the MnS precipitate is likely to form 

during solidification or in the high temperature range of austenite. The MnS particles are thus 

possibly coarse in size and often not very damaging for the hot ductility. A high level of Mn/S 

ratio is more beneficial to ductility because the sulfur tends to be tied to the precipitated MnS in 

the matrix, and not predominantly at austenite grain boundaries. Because the amount of alloying 

manganese is always more than 10 times of other elements, the effect of modifying the activities 

and diffusivity of elements by manganese addition is maybe important. For example, a 

significant decrease of dynamic precipitation rate of Nb(C,N) [63] and TiC [64] with increasing 
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manganese amount was found. The low ductility trough due to MnS precipitation is only 

apparent at high strain rates, which is not significant for transverse crack formation during 

continuous casting process. 

The most detrimental precipitates for decreasing hot ductility of steel are maybe Nb(C,N) 

and AlN, which are preferable to nucleate and grow as fine precipitates on austenite grain 

boundaries or dislocations. The Nb(C,N) precipitates, which form at austenite grain boundaries 

with a size of a few tenths of nanometers or less, delay the onset of dynamic recrystallization and 

grain boundary mobility that can otherwise isolate occasional cracks formed by other 

mechanisms. Concurrently, when grain boundary sliding is active as a process of plastic 

deformation, Nb(C,N) particles will encourage the development of cracks [65]. The precipitation 

of AlN has the similar effect [66], but it is always sluggish and mainly occurs in rolling process 

because of the different h.c.p. structure of AlN and f.c.c. structure of austenite.   

Vanadium is believed to have the similar precipitation behavior with niobium, but shows 

a reduced effect in decreasing ductility and promoting transverse cracks due to a higher solubility 

of V(C,N). The vanadium nitride and carbide is always coarser in size, and less detrimental than 

those of niobium. In order to cause a same effect with niobium steel, a much larger amount of 

vanadium addition is often required [67]. 

Titanium is maybe the most possible alloying element that can effectively improve 

ductility. Because of its low solubility, TiN precipitates form during solidification or at high 

temperature. They are so much coarser in size, less harmful and randomly distributed, and can 

provide the heterogeneous nucleation and growth sites for further precipitation of niobium and 

vanadium. The preferential combination of nitrogen with titanium also prevents the precipitation 

of more detrimental precipitation of fine AlN particles. The coarse size of TiN precipitates or 

more complex (Ti,Nb)(C,N) precipitates is possible to restrain grain growth at high temperature, 

but not small enough to initialize and propagate cracks. All these influences of titanium are 

beneficial to ductility [60].  

The microstructure of steel is, in turn, controlled by the steel composition and 

temperature histories in test. A suitable increase of alloying precipitate-forming elements could 

favor precipitation and worse ductility. The additions of microalloy also change the phase 

transformation temperatures of microalloyed steel, and thus alter the temperatures at which 

ductility trough occurs.  
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Temperature profile is also very important for precipitation formation of steel. A longer 

holding time increases both the fraction and size of precipitate. Temperature oscillation in the 

spray cooling zones of continuous casting also decreases ductility, if the temperature falls into a 

favorable range of precipitation in austenite, or even below the austenite to ferrite transformation 

temperature to enhance a much faster precipitation in ferrite [68]. 

When tensile stress is applied in the temperature range of low ductility, the cracks are 

possibly initialized. The formation of transverse surface cracks is a vital problem after the very 

early time of continuous casting, and still limits both productivity and quality of the steel 

industry these days. These cracks are believed to form in the mold, and possibly in the vicinity of 

oscillation marks, which is caused by the low melting points of these regions associated with 

segregation and higher temperature due to reduced heat transfer across gap filled with air or slag 

[69]. The carbon concentration is vital, if some peritectic solidification occurs, which may cause 

transformation strains during solidification and increase the occurrence of transverse cracks. The 

highest frequency of transverse cracks is found to appear in a carbon range of ~0.12% for C-Mn-

Al steels [70]. 

The grain size beneath oscillation marks is often coarse, and tends to favor the 

propagation of cracks. The notch geometry near oscillation marks also favors the stress 

concentration. These defects continues to become larger and more numerous below mold, as a 

result of further tensile stresses. During slab straightening, the strains are tensile on the upper 

surface of the strand and compressive on the lower surface. The strains are of course reversed for 

bending. The observation of most numerous transverse cracks on the top surface of the slab 

suggests that much transverse crack propagation is induced by the stresses experienced in the 

straightening process. The cracks generally follow austenite grain boundary, and can be several 

dozens of nm in length.  

The rapid cooling in continuous casting causes steep temperature gradients in the solid 

shell that can change rapidly and generate thermal strains when it expands or contracts. When the 

solid shell moves through the casting machine, it is subjected to various stresses caused by 

friction in the mold, ferrostatic pressure, roll pressure, misalignment, bending and straightening 

operations. Cracks are possibly initialized when the accumulated stresses are overcritical. 

In summary, a typical mechanism for transverse surface crack formation in continuous 

casting is shown in Figure 1.5 [8]. Surface grains can grow extremely large due to locally high 
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temperature and strain, especially beneath deep oscillation marks. Because the slab is cooled 

from the surface to the center during casting, precipitates first begin to form and microcracks 

initiate along these “blown” grain boundaries. With formation of more precipitates, existing 

microcracks grow and new ones form, and finally propagate into visible cracks on the top surface 

of the strand under tensile strain. Figure 1.6 obviously displays larger grains and a transverse 

crack under an oscillation mark of a 0.2% carbon steel slab [8], which proves this mechanism of 

transverse crack formation. 

 

1.4 Objectives 

Although extensive studies have been conducted on the precipitation kinetics in 

microalloyed steels, a fundamentally-based model to treat the entire precipitation as one 

continuous and competing process and cover the precipitate ranging from atomic size to coarse 

size is still lacking. Such a comprehensive model must combine both the thermodynamic and the 

kinetics of the multi-component and multi-phase steel, and simulate the evolution of precipitate 

size distribution, instead of mean precipitate size variation with time. Furthermore, the models 

for multiphase precipitation, which is frequently observed in reality, are developed. The purposes 

of this work include: 

1). To develop an efficient, fundamental new model to simulate the precipitate formation. These 

models include an equilibrium precipitation model to predict the amounts and compositions of 

the precipitates at equilibrium, and kinetic models to predict the amount and size distribution 

evolution of the precipitates with time; 

2). The suggested precipitation model needs to combine the thermodynamics and kinetics 

simultaneously. The nucleation, growth and coarsening are attempted to be simulated as one 

continuous and competing process with significant parameters in physics, and cover a larger size 

range with reasonable computation cost.  

3). Kinetic model of multiphase precipitation is necessary to simulate more realistic 

heterogeneous complex/mixed precipitates. The number densities and the molar fraction of each 

precipitate phase of particles with different size must be included. 

4). From the result of the precipitation model, an austenite grain growth model is required to 

predict the austenite grain size in the presence of precipitates. The influence of precipitates on 

inhibiting grain growth must be included. 
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5). In order to introduce less uncertainties and demonstrate its accuracy, it is better to validate 

each model separately first. Then all models are used together to simulate the precipitate 

formation for commercial steel grades and practical continuous casting processes. This work is 

done by taking advantages of an existing heat transfer model, which is applied to calculate the 

histories of temperature and steel phases within the casting slab.  

6). Combined with other models, the results from the models in this work are used to explain the 

low ductility and transverse cracks in continuous casting, where precipitates and grains have 

important effects.  

An overview of this project is shown in Figure 1.7. The first step is to predict temperature 

and steel phase fraction histories throughout the strand using an existing heat transfer model, 

CON1D. Then an equilibrium precipitation model and kinetic model are used to predict the 

composition, volume fraction and size distribution evolution of precipitates. A multiphase 

precipitation model is also necessary to compute the complex precipitation behavior. For the 

solute rich region, such as grain boundaries, a segregation model is required to compute the 

enriched composition first, and then precipitate formation can be modeled by the same sequence. 

An austenite grain growth model is applied to calculate austenite grain size evolution with the 

pinning effect of precipitates. Finally, the ductility and susceptibility to cracking of steel product 

can be determined by considering the coupled influence of grain size and precipitate histories, 

and empirical formulae from experiments. 

This work aims to improve our ability to control and utilize the effects of precipitates in 

steels. The set of equilibrium, diffusion and mass balance equations are solved simultaneously 

for each individual precipitate phase and particle. The developed models aim to provide a 

physical basis for quantitatively interpreting how various variables such as steel composition and 

casting processes affect the precipitate formation in industrial processes. The model is intended 

to be generally applicable to wide ranges of different precipitates in different alloy systems. It 

should be useful in the optimization of material design and generate subsequent improvements to 

current material manufacturing. 

 
 

 

 



14 
 

1.5 Tables and Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Example precipitates in microalloyed steels: (a), (b).Coarse complex multiple-phase 

precipitates by heterogeneous nucleation [1],  

(c).Fine spherical AlN [2], (d).Cruciform (Ti,V)N [3], (e).(Ti,Nb)C on grain boundaries [4], (f). 

NbC along dislocations in ferrite [5]  
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Figure 1.2: Schematic of modeling of precipitate and related phenomena 
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Figure 1.3: Schematic of cast section showing different types of cracks [54] 
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Figure 1.4: Schematic of temperature zones of reduced hot ductility of steel [55] 
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Figure 1.5: Mechanisms of surface crack formation with precipitate embrittlement in continuous 

casting [8] 
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Figure 1.6: Transverse crack at the base of an oscillation mark on the top surface of a 0.2%C 

steel slab [8] 
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Figure 1.7: Overview of the project 
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CHAPTER 2 

 EQUILIBRIUM PRECIPITATION MODEL 

 

An accurate modeling for precipitate growth has at least 2 steps: 1) equilibrium 

thermodynamic analysis, 2) kinetic effects. The equilibrium model could predict occurrence and 

stability of precipitates at equilibrium, and then the kinetic model could tell the rate to approach 

the equilibrium, and the amounts and particle size distributions evolution with time. 

The first crucial step to model precipitation behavior is to predict the phases, 

compositions and amounts of precipitates present at equilibrium for a given composition and 

temperature.  This represents the maximum amount of precipitate that can eventually form when 

the solubility limit is exceeded.  It is also critical for calculating the supersaturation, which is the 

composition extent of going beyond the solubility limit and the driving force for precipitate 

growth.  Thus, a fast and accurate model of equilibrium precipitation is a necessary initial step 

towards the development of a comprehensive model of precipitation kinetics. 

 

2.1 Previous Work 

Minimization of Gibbs free energy is the most popular method to determine the 

equilibrium phases present in a multi-component material. The total Gibbs energy of a multi-

component system is generally described by a regular solution model [71]. In addition to the 

Gibbs energy of each pure component, the extra energy terms come from the entropy of mixing, 

the excess Gibbs energy of mixing due to interaction between components, and the elastic, 

magnetic or other energies if stored in the system. For a binary-solution phase, such as 

disordered solid solutions, the regular solution type model gives the total Gibbs energy as 

0 0

0
[ ln ln ] ( )

n
i

A A B B A A B B A B i A B
i

G G G RT Gϕ χ χ χ χ χ χ χ χ χ χ
=

= + + + + −∑  (2.1) 

where χA and χB are the mole fractions, and 0
AG  and 0

BG are the reference energies of component 

A and B, respectively. The first two terms correspond to Gibbs energy of a mechanical mixture 

of the constituents of the phase, and the third term is the entropy of mixing for an ideal solution. 

The fourth term is for the excess Gibbs energy from interaction. The sum of the terms 

( )i
i A BG χ χ−  is called as Redlich-Kister polynomial [72], which is the commonly used 

polynomial to describe the deviation from the regular solution.   
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A higher component system can be calculated from thermodynamic extrapolation of the 

constituent subsystems. Muggianu’s method is often recommended because it can be easily 

generalized to multi-component system [73]. For example, the Gibbs energy of a ternary-solution 

phase is extrapolated from the binary energies using as 
0 0 0 [ ln ln ln ]A A B B C C A A B B C CG G G G RTϕ χ χ χ χ χ χ χ χ χ= + + + + +  

0 0 0
( ) ( ) ( )

BC CAAB n nn
AB i BC i CA i

A B i A B B C i B C C A i C A
i i i

G G Gχ χ χ χ χ χ χ χ χ χ χ χ
= = =

+ − + − + −∑ ∑ ∑  (2.2) 

For the ordered solution phases, the sublattice model is generally adopted [74]. The basic 

idea for this model is to assign a sublattice for each distinct site in the crystal structure. The 

terms in expression increases exponentially with the number of sublattices, and the interactions 

between atoms on different sublattices must be considered. Thus although the model can be 

easily generalized to an arbitrary number of sublattices in theory [75], it has been always limited 

for two sublattices in simulation. These ideas are adopted to develop CALPHAD method [76]. In 

recent years, many researchers have used software packages based on these Gibbs energy 

minimization methods, including Thermo Calc [31, 32], FactSage [33], ChemSage [34], JMatPro 

[35] and other CALPHAD models [77, 78], to calculate equilibrium precipitation behaviors in 

multi-component steels.  

One application example of these models is given by Lee for a Fe-Nb-Ti-C-N steel 

system with self-consistent thermodynamic parameters [78]. The carbonitride phase was 

modeled using a two sublattice model with (Fe,Nb,Ti)(C,N,Vacancy), where the two sublattices 

represent the substitutional metal atoms and the interstitial atoms separately.  Since not all 

positions are occupied by interstitial atoms, vacant sites were introduced.  Mutual interaction 

energies between components incorporated up to ternary interactions, and accuracy was 

confirmed by comparing predictions with thermodynamic properties of Nb-Ti carbonitrides 

measured under equilibrium conditions for a wide range of steel compositions.  

Although these models based on minimizing Gibbs free energy can accurately predict the 

equilibrium amounts of precipitates, and have the powerful ability to predict the precipitates to 

expect in a new system, the accuracy of their databases and their ability to quantitatively predict 

complex precipitation of oxides, sulfides, nitrides and carbides in microalloyed steels are still in 

question. In addition, the solubility limit of each precipitate is a logarithmic function of free 

energy, so a small inaccuracy in the free energy function could cause a large deviation in 



23 
 

calculating the amount precipitated [79].  Finally, the required free energy curves and interaction 

parameters become tedious for microalloyed steels containing dozens of components, and are 

very interdependent and so must be refit to incorporate new data.    

An alternative method to predict the equilibrium phases in a multi-component alloy is to 

simultaneously solve systems of equations based on experimentally measured solubility products, 

which represent the limits of how much a given precipitate can dissolve per unit mass of metal.  

The origin of this equilibrium constant concept can be traced back to Le Chatelier’s Principle of 

1888 [80].  The incorporation of mutual solubility was first suggested by Hudd [81] for niobium 

carbonitride, and later extended by Gladman [36] to Ti-Nb-C-N steel. This alternative method is 

proved to be more concise and easier for personal programming. 

Recently, Liu [82] developed a model to predict the equilibrium mole fractions of 

precipitates Ti(C,N), MnS and Ti4C2S2 in microalloyed steel.  The solubility products are 

calculated from standard Gibbs energies, and the interaction between alloying elements and the 

mutual solubility of Ti(C,N) are counted. The precipitation of complex vanadium carbonitrides 

and aluminum nitrides in C-Al-V-N microalloyed steels was discussed by Gao and Baker [83].  

They utilized two thermodynamic models by Adrian [84] and Rios [85], and produced similar 

results.  Park [86] calculated the precipitation behavior of MnS in austenite including two 

different sets of solubility products for Ti4C2S2 and TiS [31, 82], and assuming these sulfides and 

carbonitrides (Ti,V)(C,N) are mutually insoluble.  In both works [83, 86], the solution energy of 

mixing for C-N was assumed to be constant (-4260J/mol) with all other solution parameters 

setting as zero.  The Wagner interaction effect was neglected for this dilute system and ideal 

stoichiometry was assumed for all sulfides and carbonitrides. 

Previous solubility-product based models often neglect effects such as the differences 

between substitutional and interstitial elements during precipitation, mutual solubility between 

precipitates and the Wagner effect between solutes, so are only suitable for particular steel grades 

and precipitates.  Moreover, the analysis of molten steel and ferrite is lacking as most works only 

focus on precipitation in the austenite phase. 

  Although many previous attempts have been made, an accurate model of equilibrium 

precipitation behavior in microalloyed steel has not yet been demonstrated. The complexity 

comes from many existing physical mechanisms during precipitation processes, such as 

solubility limits of precipitates in different steel phases, change of activities due to Wagner 
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interaction between elements, treatment of mutually exclusive and soluble properties among 

precipitates and mass conservation of all elements.  

  This chapter aims to establish and apply such a thermodynamic model to efficiently 

predict the tendency, sequence and amounts of typical oxides, sulfides, nitrides and carbides in 

microalloyed steels. Mutual solubility is incorporated for appropriate precipitates with similar 

crystal structures and lattice parameters.  Wagner interaction parameters between solutes are 

widely collected from the available literatures. Mass balance of each alloying element is 

guaranteed during precipitation.  After the system of equations is established, it is solved by 

suitable numerical method. The model is applied to investigate the effect of mutual solubility.  It 

is then validated with analytical solution of simple cases, numerical results from commercial 

package JMatPro and previous experimental results.  Finally, the model is applied to predict 

equilibrium precipitation in two commercial microalloyed steels with different casting speeds in 

practical continuous casting condition. The details of this equilibrium model have been published 

in our previous paper [87]. 

 

2.2 Model Description 

The equilibrium precipitation model developed here computes the composition and 

amount of each precipitate formed for a given steel composition and temperature, based on 

satisfying the solubility products of a database of possible reactions and their associated activity 

interaction parameters.  The database currently includes 18 different oxide, sulfide, nitride and 

carbide precipitates, (TiN, TiC, NbN, NbC0.87, VN, V4C3, Al2O3, Ti2O3, MnO, MgO, MnS, MgS, 

SiO2, TiS, Ti4C2S2, AlN, BN, Cr2N), and 13 different elements, (N, C, O, S, Ti, Nb, V, Al, Mn, 

Mg, Si, B, Cr), in Fe, and is easily modified to accommodate new reactions and parameters. 

 

2.2.1 Solubility Products 

For each reaction between dissolved atoms of elements M and X to give a solid 

precipitate of compound MxXy. 

x yxM yX M X+ ↔  (2.3) 

The equilibrium solubility product, 
x yM XK , is defined as 

/
x y x y

x y
M X M X M XK a a a= ⋅  (2.4) 
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where Ma , Xa  and 
x yM Xa  are the activities of M, X and MxXy respectively.  

It is always measured as a function of temperature in experiments as 

x yM X
AK B
T

= − +  (2.5) 

where parameters A and B can be determined by fitting experiments. Since A is always 

positive, thus the solubility products decrease with lowing temperature, and there is usually a 

critical temperature below which precipitates can form, if sufficient time is given. 

The solubility products of the precipitates in liquid steel, ferrite and austenite used in this 

study are listed in Table I.  The solubilities in liquid are about 10-100 times larger than those in 

austenite, which are about 10 times greater than those in ferrite at the same temperature.  These 

observed ratios are assumed to estimate unknown solubility products for oxides in solid steel and 

for the other precipitates in liquid steel. As shown in Figure 2.1, the solubility products generally 

decrease from carbides, to nitrides, to sulfides, to oxides, which correspond to increasing 

precipitate stability.  Thus, oxides is very stable and often precipitate first, forming almost 

completely in the liquid steel, where they may collide and grow very large and be far less 

damaging than other precipitates, leaving coarse oxide particles (inclusions) and very little free 

(dissolved) oxygen remaining in the solid phase after solidification. In addition, oxide 

precipitates in the solid often act as heterogeneous nucleation cores of complex precipitates 

which form later at lower temperature [126, 127].  

The solubilities and amounts of nitrides and carbides added to microalloyed steels 

typically result in these precipitates forming in the austenite phase as small (nm-scale) second-

phase particles which inhibit grain growth.  A notable precipitate is TiN, which is roughly 100-

1000 times more stable than other nitrides and carbides.  The large variations between the ratio 

of carbide and nitride solubility products also depends greatly on the alloying elements.  This 

ratio is about 10 for niobium, so NbC0.87 precipitates are commonly observed in steels because 

carbon is always relatively plentiful.  This ratio is about 100-1000 for titanium and vanadium so 

these elements typically precipitate as nitrides. When the concentration of sulfur is high enough, 

the corresponding sulfides and carbosulfides are also observed in these steels. 

For the low solute contents of the steels, the activity ai, of each element i, (wt%) is 

defined using Henry’s law as follows: 
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[% ]i ia iγ=  where 
13

10
1

log [% ]j
i i

j
e jγ

=

=∑  (2.6) 

where γi is the activity coefficient, j
ie is the Wagner interaction coefficient of element i as 

affected by alloying element j, and [%i] is the dissolved mass concentration of element i (wt%).  

The summation covers interactions from all alloying elements, including element i itself.  This 

relation comes from the Taylor series expansion formalism first proposed by Wagner [128] and 

Chipman [129] to describe the thermodynamic relationship between logarithm of activity 

coefficient and composition of a dilute constituent in a multi-component system. Larger positive 

Wagner interaction parameters encourage more precipitation.  If the alloying concentrations were 

higher, then higher-order interaction coefficients using the extended treatment by Lupis and 

Elliott [130] should be used.  Since alloy additions are small in the microalloyed steels of interest 

in this work (<~1wt%), they are assumed to be dilute so only first-order interaction coefficients 

were collected.  Relative to the solubility product effects, these interaction parameters are a 

second order correction to precipitation in these steels.  Each referenced value was determined in 

either the liquid melt or solid steel. They are assumed independent of steel phase and are 

summarized in Table II. 

During phase transformations, when the steel has more than one phase (liquid, δ-ferrite, 

austenite and α-ferrite), the solubility product of the precipitate MxXy is defined with a weighted 

average based on the phase fractions as follows: 

x y x y x y x y x y

l
M X l M X M X M X M XK f K f K f K f Kδ γ α

δ γ α= ⋅ + ⋅ + ⋅ + ⋅  (2.7) 

where lf , fδ , fγ  and fα  are the phase fractions of liquid, δ-ferrite, austenite and α-ferrite in 

steel. 
 

2.2.2 Treatment of Mutual Solubility  

Although many different precipitates are included in the previous section, several groups 

are mutually soluble, as they exist as a single constituent phase.  There is ample experimental 

evidence to show the mutual solubility of (Ti,Nb,V)(C,N) carbonitride in steels.  The treatment 

of mutual solubility follows the ideas of Huud [81], Gladman [36], Speer [131] et al, and 

assumes ideal mixing (regular solution parameters are zero) for mutually soluble precipitates.  

The activities of precipitates which are mutually exclusive with each other remain at unity 
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because they exist separately in the steel.  On the other hand, the activities of mutually soluble 

precipitates are less than unity because they always appear together with other precipitates.  

Instead their activities are represented by their respective molar fractions in the mixed 

precipitates, so the sum of the activities of the precipitates that comprise a mutually soluble 

group is unity.  The crystal structures and lattice parameters of the precipitates are given in Table 

I.  Precipitates with the same crystal structures and similar lattice parameters (within 10%), are 

assumed to be mutually soluble, and this assumption could be adjusted by further experimental 

observations. 

According to the above criterion, the 18 precipitates in the current work are separated 

into the following 10 groups: (Ti,Nb,V)(C,N), (Al,Ti)O, (Mn,Mg)O, (Mn,Mg)S, SiO2, TiS, 

Ti4C2S2, AlN, BN, Cr2N.  Precipitates can form from the element combinations that comprise 

each of these groups, including those for the 4 mutually soluble groups shown in Table 2.3.  The 

18 solubility limits provide the following constraint equations: 

x y

x y

x y
M X

M X
M X

a aa
K
⋅

=  (2.8) 

The activity of precipitate MxXy, 
x yM Xa , is determined differently for mutually soluble and 

exclusive precipitates.  Its value is one for the 6 mutually exclusive precipitates (SiO2, TiS, 

Ti4C2S2, AlN, BN, Cr2N).  For the 4 mutually soluble precipitate groups, the precipitate activities 

must satisfy: 

0.87 4 3
1TiN NbN VN TiC NbC V Ca a a a a a+ + + + + =  (2.9) 

2 3 2 3
1Al O Ti Oa a+ =  (2.10) 

1MnO MgOa a+ =  (2.11) 

1MnS MgSa a+ =  (2.12) 

The y/x ratio of each precipitate MxXy is easily calculated from Table I, and is often a 

non-stoichiometric fraction, according to experimental observations.  With wide uncertainties in 

measured solubility products [36], further research is needed to modify these data to best match 

new measurements. 

Since not all the precipitates are always formed, Eq. (2.8) is required to be used 

cautiously. The criteria for determining whether the certain kind of precipitate from or not is first 

given by 
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x y

x y

x y
M X

M X
M X

a a a
K
⋅

≥  (2.13) 

This condition needs to be calculated and judged iteratively each time after the dissolved 

concentrations of elements are calculated and updated. If this condition is true, then both sides in 

the above equation must be imposed to be equal as Eq. (2.8) to satisfy the solubility requirement. 

If this is not true, Eq. (2.8) is not satisfied anymore because the dissolved alloy concentrations 

are under the solubility limit, and the following equation is imposed instead, which states that 

precipitate MxXy does not form at present: 

0
x yM Xχ =  (2.14) 

For the mutually soluble precipitate groups, such as (Ti,Nb,V)(C,N), the criteria is given 

as 

0.87 4 3
1TiN NbN VN TiC NbC V Ca a a a a a+ + + + + ≥  (2.15) 

If this is true, the equations (2.8) for all TiN, TiC, NbN, NbC0.87, VN, V4C3 need to be all 

satisfied. Otherwise, ( , , )( , ) 0Ti Nb V C Nχ = , and the activities of TiNa , NbNa , VNa , TiCa , 
0.87NbCa , 

4 3V Ca  

can be randomly chosen to satisfy Eq. (2.9) because these values have no physical meaning when 

this group of precipitates does not form yet. 

 

2.2.3 Mass Balance on Alloying Elements 

The total of the molar fractions of each group of precipitates in the steel is 

2 4 2 2 2( , , )( , ) ( , ) ( , ) ( , )total Ti Nb V C N Al Ti O Mn Mg O Mn Mg S SiO TiS Ti C S AlN BN Cr Nχ χ χ χ χ χ χ χ χ χ χ= + + + + + + + + +  

(2.16) 

The following equations must be satisfied for the mass balance of each of the 13 alloying 

elements, by summing over all 18 precipitate types, as summarized in Table 2.4: 

( )0

18

[ ]
1

(1 )
x yM total M M X

i i

xχ χ χ χ
=

= − +∑  (2.17) 

( )0

18

[ ]
1

(1 )
x yX total X M X

i i

yχ χ χ χ
=

= − +∑  (2.18) 

where 
0 0 /(100 )M steel MA M Aχ =  and [ ] [ ] /(100 )M steel MA M Aχ =  are the molar fractions of the total 

mass concentration, M0 (wt%,) of the given element in the steel composition, and the dissolved 

concentration [M] (wt%) for the element M.  steelA  and MA  are the atomic mass of the steel 
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matrix and element M.  A similar relation holds for element X in Eq. (2.18).  It indicates that total 

concentration of each alloying element is divided into that in solution and that in precipitate form.  

The molar fraction 
x yM Xχ  of precipitate MxXy is the product of the activity of this precipitate and 

its corresponding molar fraction of the precipitate group:  

M X M Xx y x y gaχ χ=  (2.19) 

where gχ  is the molar fraction of mutually soluble precipitate group g which contains precipitate 

MxXy. For example, the group ( , , )( , )g Ti Nb V C N=  contains MxXy precipitates TiN, NbN, VN, 

TiC, NbC0.87 and/or V4C3.  

Generally, there are P equations for the solubility limits of P precipitates, M equations for 

mass balances of M alloying elements, and Q extra constraint equations for Q groups of 

mutually soluble precipitates.  The total number of equations is P+M+Q.  In addition, there are 

M unknown dissolved concentrations of the M alloying elements, R molar concentrations of the 

R groups of mutually exclusive precipitates, Q molar concentrations of the Q groups of 

mutually-soluble precipitates, and P-R mutually soluble coefficients.  Thus the total number of 

unknowns is also M+Q+P.  The current study includes P=18 precipitates, M=13 alloying 

elements, and Q=4 mutually soluble groups, giving 35 equations and 35 unknowns.  With an 

equal number of equations and unknowns, the equation system can be solved by suitable 

numerical method. It is also worth to mention that most of the above equations are general and 

satisfied for the whole precipitation process no matter whether the system is under equilibrium. 

But if solubility product equation (2.4) is satisfied, the calculated values are all for equilibrium 

state. In order to clear the ambiguity, the equilibrium values in this work are labeled by an under 

script such as [M]eq, comparing with the transient concentration [M], which changes from the 

initial concentration M0 to the equilibrium concentration [M]eq during precipitation. 

 

2.2.4 Numerical Solution Details  

The above equations are solved simultaneously using a simple iterative scheme.  To 

achieve faster convergence, the method takes advantage of the fact that results are desired over a 

wide temperature range, as it runs incrementally from above the solidus temperature to below the 

austenite to α-ferrite transformation temperature.  Starting at a high temperature in liquid steel, 

complete solubility of every precipitate phase is obtained.  Temperature is lowered at each time 
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step, using the results from the previous step as the initial guess.  The 35 equations are solved by 

Newton-Raphson method until the largest absolute error between left and right sides of all 

equations converges to less than 10-6.  The (35×35) matrix of the derivatives of the equations 

with respect to the unknowns is calculated analytically.  The solution of this system of equations 

Fi is given as 
1

1 ( ) ( )k k k kz z J z F zλ −
+ = −  (2.20) 

The Jacobian matrix J is computed from 

{ } ( )( ) i
ij

j

F zJ z
z

∂
=

∂
 (2.21) 

The parameter λ is continuously halved from unity until the norm of the equations system 

decreases. After solving the equations, the dissolved concentrations of each alloying element and 

the amounts of each precipitate formed at equilibrium are stored at each temperature.   

The computational time is typically smaller than 0.1s for each temperature, so the current 

model gives a relatively quick prediction of the equilibrium phases for microalloyed steels.  Such 

an efficient model is efficient for coupling into a kinetic model. 

The molar concentration of precipitate can be transformed to the mass concentration or 

volume fraction in steels.  For precipitate MxXy, its mass concentration 
x yM Xw  (wt%), and volume 

fraction 
x yM Xϕ  are calculated from its molar fraction

x yM Xχ , as follows: 

100
x y

x y x y

M X
M X M X

steel

A
w

A
χ=  (2.22) 

x y

x y x y

x y

M Xsteel
M X M X

M X steel

A
A

ρϕ χ
ρ

=  (2.23) 

where steelA  and 
x yM XA  are the atomic mass, and steelρ  and 

x yM Xρ  are the density of the steel 

matrix and precipitate separately.  As the alloy additions are small, these properties of steel are 

simply taken to be constants (55.85g/mol and 7500kg/m3). 

 

2.3 Influence of Mutual Solubility 

2.3.1 Validation with Analytical Solutions of Mutually Exclusive Precipitates 

For simple single-precipitate systems with y/x=1, such as NbN, Wagner interaction can 

be neglected and the element activities are equal to their dissolved mass concentration in the very 
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dilute systems.  The first precipitate occurs when the product of the initial concentrations, Nb0 

and N0, exceeds KNbN.  After NbN forms, the solubility limit requires 

[ ] [ ]eq eq NbNNb N K=  (2.24) 

The stoichiometry requirement for this chemical reaction is 

0 0[ ] [ ]eq eq

Nb N

Nb Nb N N
A A
− −

=  (2.25) 

  The analytical solution can be summarized as 

(a). At high temperature, when Nb0*N0≤KNbN, there are no precipitates 

(b). At lower temperature, when Nb0*N0>KNbN 

2
0 0 0 0( ) ( ) 4

[ ]
2

Nb N Nb N Nb N NbN
eq

Nb

A N A Nb A N A Nb A A K
N

A
− + − +

=  

2
0 0 0 0( ) ( ) 4

[ ]
2

Nb N Nb N Nb N NbN
eq

N

A N A Nb A N A Nb A A K
Nb

A
− − + − +

=  

2
0 0 0 0( ) ( ) 4

( ) ( )
2

Nb N Nb N Nb N NbN
NbN eq Nb N

Nb N

A N A Nb A N A Nb A A K
w A A

A A

⎛ ⎞+ − − +
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

 (2.26) 

For mutually exclusive precipitates composing with y/x=1, if these precipitates do not 

share any alloying elements, the analytical solution is simply two sets of equations like those for 

NbN.  Alternatively, if they share a common element, such as with Nb-Al-N system with NbN 

and AlN, all of the different possible conditions, such as Nb0*N0>KNbN and Al0*N0>KAlN, are 

tested to find which precipitate forms first.  After one precipitate forms, the initial nitrogen 

concentration is replaced with its dissolved value to judge whether the other precipitate forms or 

not and the results change if both precipitates form. 

If both precipitates form, the solubility limits and chemical reaction require 

[ ] [ ]eq eq NbNNb N K=  (2.27) 

[ ] [ ]eq eq AlNAl N K=  (2.28) 

0 0 0[ ] [ ] [ ]eq eq eq

Nb Al N

Nb Nb Al Al N N
A A A
− − −

+ =  (2.29) 

The solution can be summarized as 

(a). At high temperature, when Nb0*N0≤KNbN and Al0*N0≤KAlN, there is no precipitate 



32 
 

(b). At low temperature, when either Nb0*N0>KNbN and Al0*N0>KAlN is satisfied 

(i). If Nb0*N0>KNbN, the solution is given like a single NbN case  

(ii). If Al0*N0>KAlN, the solution is similar to Eq. (2.26), but all values of Nb are replaced with 

the corresponding values of Al instead. 

(c). If the temperature continues to decrease so that both Nb0*N0>KNbN and Al0*N0>KAlN are 

satisfied, Nb0*N0/KNbN and Al0*N0/KAlN are computed and compared 

(i). If Nb0*N0/KNbN is larger, the following condition is checked 

0 [ ]eq AlNAl N K∗ >  (2.30) 

If true, then both precipitates form. Otherwise, only NbN precipitates exist. 

(ii). If Al0*N0/KAlN is larger, the next condition is checked 

0 [ ]eq NbNNb N K∗ >  (2.31) 

If true, then both precipitates form. Otherwise, only AlN precipitates exist.  

(iii). If both precipitates form 

0 0 0[ ( )][ ]
2

Nb Al N Nb Al
eq

Nb Al

A A N A A Al A NbN
A A

− +
=  

2
0 0 0[ ( )] 4 ( )

2
Nb Al N Nb Al Nb Al N Nb AlN Al NbN

Nb Al

A A N A A Al A Nb A A A A K A K
A A

− + + +
+  

0 0 0[ ( )][ ]
2 ( )

NbN Nb Al N Nb Al
eq

N Nb AlN Al NbN

K A A N A A Al A NbNb
A A K A K

− − +
=

+
 

2
0 0 0[ ( )] 4 ( )

2 ( )
NbN Nb Al N Nb Al Nb Al N Nb AlN Al NbN

N Nb AlN Al NbN

K A A N A A Al A Nb A A A A K A K
A A K A K

− + + +
+

+
 

0 0 0[ ( )][ ]
2 ( )

AlN Nb Al N Nb Al
eq

N Nb AlN Al NbN

K A A N A A Al A NbAl
A A K A K

− − +
=

+
 

2
0 0 0[ ( )] 4 ( )

2 ( )
AlN Nb Al N Nb Al Nb Al N Nb AlN Al NbN

N Nb AlN Al NbN

K A A N A A Al A Nb A A A A K A K
A A K A K

− + + +
+

+
 

0 0 0 0( ( )) 2( ) ( )
2 ( )

NbN Nb Al N Al Nb Nb N AlN
NbN eq Nb N

Nb N Nb AlN Al NbN

K A A N A A Nb A Al A A Nb Kw A A
A A A K A K

⎡ + − +
= + ⎢ +⎣

 

2
0 0 0[ ( )] 4 ( )

2 ( )
NbN Nb Al N Nb Al Nb Al N Nb AlN Al NbN

Nb N Nb AlN Al NbN

K A A N A A Al A Nb A A A A K A K
A A A K A K

⎤− + + +
⎥−

+ ⎥⎦
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0 0 0 0( ( )) 2( ) ( )
2 ( )

AlN Nb Al N Nb Al Al N NbN
AlN eq Al N

Al N Nb AlN Al NbN

K A A N A A Al A Nb A A Al Kw A A
A A A K A K

⎡ + − +
= + ⎢ +⎣

 

2
0 0 0[ ( )] 4 ( )

2 ( )
AlN Nb Al N Nb Al Nb Al N Nb AlN Al NbN

Al N Nb AlN Al NbN

K A A N A A Al A Nb A A A A K A K
A A A K A K

⎤− + + +
⎥−

+ ⎥⎦
 (2.32) 

For mutually-exclusive precipitates which share alloying elements, the formation of the 

first precipitate phase changes the dissolved concentration of shared elements and delays the 

formation of other precipitates.  The interaction parameters are all set to zero for numerical 

simulation of these test cases.  Figure 2.2 shows that the numerical results match the analytical 

solution very well for all three hypothetical steels. By adding 0.02%Al into steel with 0.02%Nb 

and 0.02%N, AlN forms first, consumes some of the dissolved nitrogen which delays the 

formation of NbN precipitate, and decreases the equilibrium amount of NbN.  Instead, if 0.01%B 

is added to the 0.02%Nb and 0.02%N steel, the early precipitation of BN delays NbN to form at 

an even lower temperature.  This is because BN has a lower solubility limit and reacts with more 

nitrogen in forming BN because of a lower atomic mass of boron.  

A precipitation diagram for the Nb-Al-N-Fe system at different temperatures in austenite 

was calculated from the current model and shown in Figure 2.3.  The sum of the mass 

concentration of elements Nb, Al and N is set as 0.05wt%.  Each curve in this diagram shows the 

boundary between stable and unstable precipitation of AlN or NbN in these hypothetical steels.  

At 1300oC, AlN forms first because of its lower solubility limit.  The composition region for 

stable AlN precipitation increases with decreasing temperature.  When temperature drops below 

1150oC, either AlN or NbN may exist for certain compositions.  Finally, at temperatures below 

1125oC, either AlN, NbN or both precipitates could coexist. Similar progressions occur in other 

systems. 

 

2.3.2 Calculation for Mutual Soluble Precipitates 

A prediction of mutually-soluble precipitation is shown in Figure 2.4 for a hypothetical 

Ti-Nb-N steel with 0.01%Nb, 0.01%N and 0.005%Ti.  The precipitates form as the single group 

(Ti,Nb)N, and even for this simple example of mutually-soluble system, an analytical solution 

could not be found.  In addition to precipitate amounts, Figure 2.4 shows how the precipitate 

composition evolves with decreasing temperature.  For example, at 1300oC, the precipitate group 

composition is 72%Ti, 6%Nb and 22%N, which corresponds to the molar-fraction expression 
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Ti0.48Nb0.02N0.50.  When titanium is present, TiN is the dominant precipitate at high temperature, 

owing to its high stability.  Its molar fraction (fTiN)eq decreases at lower temperature, as NbN 

forms from the remaining N, and increases the Nb content of the precipitate.  This result is 

consistent with experimental findings, such as Strid [132] and Craven [133], where the core of 

complex carbonitrides is mainly TiN.  The model suggests that precipitates generated at high 

temperature are Ti-rich, and the precipitate layers that form later become richer in Nb as the 

temperature lowers.  Figure 2.4(a) also shows results for the same steel without Ti.  With mutual 

solubility, adding titanium remarkably increases the initial precipitation temperature and 

decreases the equilibrium activity of NbN, which allows more NbN to form.  If TiN and NbN 

were mutually exclusive, then adding titanium would decrease NbN precipitation.  This result 

illustrates the importance of proper consideration of mutual solubility in the model. 

 

2.4 Validation with Commercial Packages and Experimental Measurements 

2.4.1 Validation with Commercial Package  

The chemical composition of the two commercial steels in this work, 1004 LCAK (low 

carbon aluminum killed) and 1006Nb HSLA (high strength low alloy), are given in Table 2.5.  

The results from the commercial package JMatPro 5.0 with general steel submodule [134] and 

the current model are compared in Figure 2.5.  The JMatPro predicts separate precipitation of a 

TiN-rich “MN” phase at higher temperatures and a NbC-rich “M(C,N)” phase at lower 

temperatures.  These are treated together as a single (Ti,Nb,V)(C,N) phase with evolving 

composition in the current model, as previously mentioned.  The oxide M2O3 predicted by 

JMatPro corresponds with the (Al,Ti)O phase in the current model. 

The comparison shows qualitative agreement for the predicted precipitate types, and the 

amounts of (Al,Ti,)O, MnS, and (Ti,Nb,V)(C,N) between the two models are all similar.  For the 

latter phase group, JMatPro predicts a double-humped curve, owing to its two precipitate groups, 

MN and M(C,N), which is roughly approximated by a single smooth curve with the current 

model.  The composition of (Ti,Nb,V)(C,N) in the current model also matches reasonably with 

the average composition of the two precipitate groups in JMatPro.  For example, in 1006Nb steel 

the calculated composition is Ti0.48Nb0.02V0.00C0.00N0.50 at 1304oC and Ti0.28Nb0.22V0.00C0.23N0.27 

at 804oC for JMatPro, and Ti0.47Nb0.03V0.00C0.02N0.48 at 1304oC and Ti0.29Nb0.21V0.02C0.14N0.35 at 

804oC for the current model.  The current model predicts that (Ti,Nb,V)(C,N) and MnS first form 
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in the δ-ferrite phase, but dissolve after the transformation to austenite, where the solubilities are 

larger. This trend is missing in JMatPro.  JMatPro consistently predicts more AlN than the 

current model, likely due to having less solubility for this precipitate in its database.  Below 

800oC, a jump in AlN is predicted by JMatPro. This is because cementite transformation is 

ignored in the current model. The carbon-rich Fe3C phase provides plenty of carbon to allow MN 

and M(C,N) to form nearly as pure carbide, which leaves more nitrogen to react with Al.  In 

conclusion, the differences between the two models are not considered to be significant, 

considering that both models neglect the important effects of kinetics. 

 

2.4.2 Validation with Measured Equilibrium-Precipitated Nb Amount  

  Zajac and Jansson [135] investigated equilibrium precipitation in several Nb-based 

industrial microalloyed steels, including the two compositions shown in Table 2.6.  The steels 

were first solution treated at 1300oC or 1350oC for 1 hour to dissolve precipitates followed by 

quick water quenching.  Then, specimens were heated and aged at two different temperatures 

isothermally for 24 to 48 hours.  The precipitated amount of Nb in Nb(C,N) was measured by the 

inductively coupled plasma (ICP) emission method on electrolytically extracted compounds for 

each sample.  Figure 2.6 compares these experimental measurements with calculated results of 

precipitated niobium amount for these two steels, and shows that the current model matches well 

with the experimental data. 

 

2.4.3 Validation with Observed Titanium Precipitate Types 

Titanium sulfide and titanium carbosulfide are also observed in high-titanium steels.  The 

equilibrium precipitation behavior of titanium stabilized interstitial free steels was studied 

quantitatively using dissolution experiments by Yang et al [103].  Several steels with different 

compositions were reheated at different temperatures varying from 1100oC to 1350oC and the 

holding time to reach the equilibrium state varied from 1.5 to 3 hours for different reheating 

temperatures. The steel compositions and the types of precipitates observed at each holding 

temperature in the experiments are listed in Tables 2.7 and 2.8 respectively.  The calculated 

molar fractions of the precipitates in these steels with temperature are shown in Figure 2.7.  The 

model predictions are consistent with the observed stability of these precipitates.  The oxide 

Al2O3 begins to form in the liquid steel, so was likely removed by the flux/slag, and not recorded 
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in the experiments. 

 

2.4.4 Validation with Measured Inclusion Compositions for Welding 

Inclusion formation in steel welds is important to decide the final microstructure and 

improve toughness in welds.  It is also a good resource to validate the current model since many 

measurements are available in the literature.  Kluken and Grong [136] measured the inclusion 

compositions in term of average element concentrations of aluminum, titanium, manganese, 

silicon, sulfur and copper in nine submerged arc welds with different steel compositions using 

the wavelength dispersive X-ray (EDX) intensity analysis and carbon extraction replicas method.  

The observed inclusions in the solidified weld pool consist of an oxide core forming due to 

reoxidation in the liquid state, and are covered partially by sulfides and nitrides on their surfaces.  

Simple empirical relations were suggested to compute the dissolved concentrations of alloying 

elements to match the measurements, and the order of precipitate formation was always Al2O3, 

Ti2O3, SiO2, MnO, MnS and TiN regardless of the weld composition.  

  Hsieh [137] used Thermo-Calc software to predict inclusion development in these low-

alloy-steel welds.  Multi-phase equilibrium between oxides and liquid steel was assumed since 

the precipitation reactions are very fast at these high temperatures.  The oxidation sequence was 

found to be sensitive to small changes in the weld composition.  The calculation stopped at 

liquidus temperature 1527oC, so the possible formation of sulfides, nitrides and carbides after 

solidification was not found. 

The distributions of various precipitated compounds in the inclusions are computed by 

the current model as functions of steel composition.  Since precipitates including copper are not 

considered in this study, the original measured inclusion composition data were normalized to 

make the sum of the mass concentration of aluminum, titanium, manganese, silicon and sulfur 

total 100%, in order to allow for a proper comparison.  The chemical compositions of the 

experimental welds are given in Table 2.9.  A comparison of the calculated inclusion 

compositions at 1527oC in liquid steel and 1250oC in austenite with the measurements is shown 

in Figure 2.8, and reasonable agreement is found especially at 1250oC, after high temperature 

solid-state reactions alter the normalized compositions, but before kinetics stops the diffusion 

(slope=0.644 and correlation coefficient=0.911 at 1527oC, slope=0.988 and correlation 

coefficient=0.932 at 1250oC).  It indicates that the current model can be used as a first 
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approximation to describe the formation of complex inclusions for different weld metal 

compositions.  The agreement is likely adversely affected by the lack of consideration of kinetics 

and segregation during solidification in the current model. 
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2.5 Tables and Figures 

Table 2.1: Lattice parameters and solubility products of precipitates 
 

Composition 
(mass percent) 

Crystal form 
Lattice parameter 10log lK  10 ,log Kα δ  10log Kγ  

Al2O3 
[%Al]2[%O]3 

Hexagonal[88]

4.76 , 13.0a c= =
0 0
A A  

[96]64000 20.57
T

− +  *51630 7.55
T

− +  [101]51630 9.45
T

− +  

Ti2O3 
[%Ti]2[%O]3 

Hexagonal[89]

5.16 , 13.6a c= =
0 0
A A  

[97]56060 18.08
T

− +  *56060 14.08
T

− +  *56060 15.98
T

− +  

MgO 
[%Mg][%O] 

f.c.c[88] 

4.21a =
0
A  

[98]4700 4.28
T

− −  *4700 6.28
T

− −  *4700 5.33
T

− −  

MnO 
[%Mn][%O] 

f.c.c[90] 

4.45a =
0
A  

[99]11749 4.666
T

− +  *11749 2.666
T

− +  *11749 3.616
T

− +  

SiO2 
[%Si][%O]2 

Trigonal[91]

4.91 , 5.41a c= =
0 0
A A  

[100]30110 11.40
T

− + *30110 9.40
T

− +  *30110 10.35
T

− +  

MnS 
[%Mn][%S] 

f.c.c[92] 

5.22a =
0
A  

*9020 3.98
T

− +  *9020 1.98
T

− +  [102]9020 2.93
T

− +  

MgS 
[%Mg][%S] 

f.c.c[92] 

5.20a =
0
A  

*9268 2.06
T

− +  *9268 0.06
T

− +  [103]9268 1.01
T

− +  

TiS 
[%Ti][%S] 

Trigonal[93]

3.30 , 26.5a c= =
0 0
A A  

*13975 6.48
T

− +  *13975 4.48
T

− +  [104]13975 5.43
T

− +  

Ti4C2S2
** 

[%Ti]4[%C]2[%S]2 
Hexagonal[93]

3.30 , 11.2a c= =
0 0
A A  

*68180 35.8
T

− +  *68180 27.8
T

− +  [104]68180 31.6
T

− +  

AlN 
[%Al][%N] 

Hexagonal[36]

3.11 , 4.97a c= =
0 0
A A  

[100]12950 5.58
T

− +  [100]8790 2.05
T

− +  [100]6770 1.03
T

− +  

BN 
[%B][%N] 

Hexagonal[94]

2.50 , 6.66a c= =
0 0
A A  

[100]10030 4.64
T

− +  [100]14250 4.61
T

− +  [100]13970 5.24
T

− +  

NbN 
[%Nb][%N] 

f.c.c[36] 
4.39a =

0
A  

*12170 6.91
T

− +  [100]12170 4.91
T

− +  [100]10150 3.79
T

− +  

NbC0.87 
[%Nb][%C]0.87 

f.c.c[36] 
4.46a =

0
A  

*9830 6.33
T

− +  [100]9830 4.33
T

− +  [100]7020 2.81
T

− +  

TiN 
[%Ti][%N] 

f.c.c[36] 
4.23a =

0
A  

[100]17040 6.40
T

− +  [100]18420 6.40
T

− +  [100]15790 5.40
T

− +  

TiC 
[%Ti][%C] 

f.c.c[36] 
4.31a =

0
A  

[100]6160 3.25
T

− +  [100]10230 4.45
T

− +  [100]7000 2.75
T

− +  

VN 
[%V][%N] 

f.c.c[36] 
4.12a =

0
A  

*9720 5.90
T

− +  [100]9720 3.90
T

− +  [100]7700 2.86
T

− +  

V4C3
** 

 [%V]4[%C]3 
f.c.c[36] 

4.15a =
0
A  

*28200 24.96
T

− +  [100]28200 16.96
T

− +  [100]26240 17.8
T

− +  

Cr2N 
[%Cr]2 [%N] 

Trigonal[95]

4.76 , 4.44a c= =
0 0
A A  

*1092 0.131
T

− −  *1092 2.131
T

− −
 

[105]1092 1.181
T

− −
 

* Estimated values used in the present work; temperature is in Kelvin 
** For consistency, these solubility products are rewritten in the form MxXy, according to the relationship 

/10 10log log
x y y xM X MXK x K=  
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Table 2.2: Selected interaction coefficients in dilute solutions of microalloyed steel 
Element j j

Ne  j
Ce  j

Se  j
Oe  j

Tie  j
Nbe  

N 6294/T[106] 5790/T[109] 0.007[100] 0.057[113] 19500/T+8.37[110] - 
C 0.06[100] 8890/T[107] 0.11[100] -0.42[96] -221/T-0.072[96] - 
S 0.007[100] 0.046[100] -8740/T-

0.394[108] 
-0. 133[113] -0.27[96] - 

O 0.05[100] -0.34[100] -0.27[100] 1750/T+0.76[96] -3.4[96] - 
Ti -5700/T+2.45[110] -55/T-0.015[96] -0.072[113] -1.12[96] 0.042[96] -. 
Nb -235/T+0.055[111] -66257/T[117] -. - - -2[109]

V 356/T+0.0973[112] - - - - - 
Al -0.028[113] 0.043[100] 0.035[113] -1.17[96] 0.93[121] - 
Mn -8336/T-27.8 

+3.652lnT[114] 
-5070/T[118] -0.026[100] -0.021[96] -0.043[96] - 

 

Mg - -0.07[113] - -1.98[96] -1.01[122] - 
Si -286/T+0.202[115] 162/T-0.008[113] 0.063[100] -0.066[96] 177.5/T-0.12[115] 77265/T-44.9[117]

B 1000/T-0.437[116] - - - - - 
Cr 65150/T+24.1[114] 21880/T+7.02[119] -0.011[113] -0.046[120] -0.016[120] 216135/T+140.8[117]

 
Element 

j 
j

Ve  j
Ale  j

Mne  j
Mge  j

Sie  j
Be  j

Cre  

N -. 0.058[113] - - - - - 
C - 0.091[96] -0.0538[96] -0.25[122] 0.18[96] - -0.12[113]

S - 0.035[96] 28418/T+12.8[102] - 0.066[96] - 153/T+0.062[113]

O - -1.98[96] -0.083[96] -3[96] -0.119[96] - -0.14[113]

Ti - 0.004[121] -0.05[96] -0.51[122] 1.23[96] - 0.059[113]

Nb - - - - - - - 
V 470/T-

0.22[123] 
- - - - - - 

Al - 0.043[96] 0.027[124] -0.12[122] 0.058[96] - 0.023[120]

Mn - 0.035[124] 175.6/T+2.406[106] - -0.0146[96] - 0.0039[96] 
Mg - -0.13[122] - - - - 0.042[125]

Si - 0.056[96] -0.0327[96] -0.088[96] 0.103[96] - -0.0043[113]

B - - - - - 0.038[116] - 
Cr - 0.012[120] 0.0039[96] 0.047[122] -0.0003[96] - -0.0003[113]

-.: not found value in literature, they are assumed to be zero in current calculation 
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Table 2.3: Mutually-soluble precipitate groups and their precipitates 

Mutually-soluble precipitate group Precipitate types involved  

(Ti,Nb,V)(C,N) TiN, NbN, VN, TiC, NbC0.87, V4C3, 

(Al,Ti)O Al2O3, Ti2O3 

(Mn,Mg)O MnO, MgO 

(Mn,Mg)S MnS, MgS 

 

 

Table 2.4: Precipitates considered for each alloying-element mass balance 

Element Groups of precipitates Types of precipitates 

N (Ti,Nb,V)(C,N), AlN, BN, Cr2N TiN, NbN, VN, AlN, BN, Cr2N 

C (Ti,Nb,V)(C,N), Ti4C2S2 TiC, NbC0.87, V4C3, Ti4C2S2 

S (Mn,Mg)S, TiS, Ti4C2S2 MnS, MgS, TiS, Ti4C2S2 

O (Al,Ti)O, (Mn,Mg)O, SiO2 Al2O3, Ti2O3, MnO, MgO, SiO2 

Ti (Ti,Nb,V)(C,N), (Al,Ti)O, TiS, Ti4C2S2 TiN, TiC, Ti2O3, TiS, Ti4C2S2 

Nb (Ti,Nb,V)(C,N) NbN, NbC0.87 

V (Ti,Nb,V)(C,N) VN, V4C3 

Al (Al,Ti)O, AlN Al2O3, AlN 

Mn (Mn,Mg)O, (Mn,Mg)S  MnO, MnS 

Mg (Mn,Mg)O, (Mn,Mg)S MgO, MgS 

Si SiO2 SiO2 

B BN BN 

Cr Cr2N Cr2N 
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Table 2.5: Compositions of 1004 LCAK and 1006Nb HSLA steels (weight percent) 

Steel Al C Cr Mn Mo N Nb S Si Ti V O 
1004 LCAK 0.040 0.025 0.025 0.141 0.007 0.006 0.002 0.0028 0.028 0.0013 0.001 0.00015 

1006Nb HSLA 0.0223 0.0472 0.0354 0.9737 0.0085 0.0083 0.0123 0.0013 0.2006 0.0084 0.0027 0 

 

Table 2.6: Compositions of Nb-based microalloyed steels (wt%) 

Steel C Si Mn P S Nb Al N V Ti 

Nb4 0.158 0.28 1.48 0.008 0.002 0.010 0.016 0.005 0.013 0.003 

Nb8 0.081 0.31 1.44 0.010 0.002 0.033 0.017 0.004 0.011 0.003 

 

Table 2.7: Compositions of Ti-based microalloyed steels (wt%) 

Steel C Si Mn P S Al Ti N O 

B 0.0036 0.0050 0.081 0.011 0.0028 0.045 0.095 0.0019 0.0028 

C 0.0033 0.0040 0.081 0.011 0.0115 0.037 0.050 0.0022 0.0036 

 

Table 2.8: Precipitates observed after holding several hours at different temperatures 

Steel 1300oC 1250oC 1200oC 1150oC 1100oC 

B TiN TiN,TiS* TiN,TiS TiN,Ti4C2S2 TiN,Ti4C2S2 

C TiN,TiS TiN,TiS TiN,TiS TiN,TiS TiN,<TiS>,Ti4C2S2 

        Note: * means very scarce and < > means minor amount  

 

Table 2.9: Compositions of experimental weld steels (wt%) 

Weld C O Si Mn P S N Nb V Cu B Al Ti 

1 0.09 0.034 0.48 1.86 0.010 0.010 0.005 0.004 0.02 0.02 0.0005 0.018 0.005

2 0.09 0.037 0.55 1.84 0.010 0.009 0.005 0.005 0.02 0.03 0.0006 0.020 0.025

3 0.10 0.035 0.69 1.88 0.012 0.010 0.008 0.004 0.02 0.03 0.0008 0.028 0.063

4 0.10 0.030 0.52 1.87 0.010 0.007 0.005 0.007 0.01 0.06 0.0004 0.041 0.005

5 0.09 0.039 0.58 1.95 0.009 0.009 0.005 0.005 0.02 0.03 0.0006 0.037 0.022

6 0.09 0.040 0.69 1.97 0.009 0.009 0.006 0.007 0.02 0.03 0.0006 0.044 0.058

7 0.09 0.032 0.53 1.90 0.009 0.008 0.005 0.006 0.02 0.03 0.0004 0.062 0.008

8 0.10 0.031 0.62 1.92 0.010 0.010 0.005 0.005 0.02 0.03 0.0006 0.062 0.032

9 0.09 0.031 0.62 1.78 0.011 0.007 0.006 0.004 0.01 0.08 0.0006 0.053 0.053
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(a). Austenite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b). Ferrite 

 

Figure 2.1: Solubility products of various precipitates in austenite and ferrite 
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Figure 2.2: Comparison of mutually-exclusive precipitation model predictions with analytical 

solution in austenite for 3 Fe alloys containing 0.02%N and 0.02%Nb, and either 0.02% Al or 

0.01% B  
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Figure 2.3: Calculated precipitation phase diagram for quaternary Nb-Al-N system with 

99.95%Fe  
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(a). Precipitate amount 

 

 
(b). Molar fraction of (Ti,Nb)N precipitates 

 

Figure 2.4: Model calculation of mutually-soluble precipitation in austenite for 2 Fe alloys 

containing 0.01%N and 0.01%Nb, with and without 0.005%Ti  
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(a). 1004 LCAK steel 

 

 
(b). 1006Nb HSLA steel 

 

Figure 2.5: Comparison of precipitate calculations by software JMatPro and the current model 
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Figure 2.6: Comparison of predicted amounts of Nb precipitation with experimental 

measurements at different temperatures (Table 2.6 steels [135]) 
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(a). Steel B 

 

 
(b). Steel C 

 

Figure 2.7: Calculated molar fractions of precipitates for Ti-steels in Table 2.7 
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(a). 1527oC (liquidus temperature) 

 

 
(b). 1250oC 

 

Figure 2.8: Comparison of calculated and measured inclusion compositions for welding metals 

[136]   
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CHAPTER 3 

KINETIC MODEL OF SINGLE-PHASE PRECIPITATION  

 

An equilibrium model developed in chapter 2 can predict the occurrence, stability, 

compositions and amounts of precipitates at equilibrium, for the different steel compositions, 

phases, and temperatures. Theoretically, precipitates start to form when the solubility limit is 

exceeded, and they can form at different rates, stages and locations during steel processing, 

including in the liquid steel due to rapid diffusion and collision, the mushy-zone between 

dendrites and grains due to rapid diffusion in the segregated liquid, and in the solid state due to 

slow diffusion inside the grains, faster diffusion at the grain boundaries, or along the advancing 

austenite-ferrite interphase boundary. These different mechanisms cause the precipitate particles 

to show a variety of compositions, morphologies and size distributions. 

The precipitation may be sluggish even if it is thermodynamically most favored in reality, 

and it is verified in experiments that precipitation may take 10-30 minutes to start, and 1-24 

hours to reach equilibrium in undeformed austenite even at a favorable temperature range [21, 

138]. For most casting and reheating processes of steels, especially under low temperatures and 

deformation, equilibrium is seldom approached due to a limited time.  From kinetic point, 

driving forces for precipitation in solid are diffusion rate and supersaturation. Near the high 

temperature just after the solubility limit is exceeded, the low supersaturation causes a slow 

precipitation although the diffusion is high. At low temperature, the low diffusion makes the 

precipitation slow although the supersaturation is high. Thus the Precipitation-Temperature-Time 

(PTT) curve always shows a “C” shape, and a quick precipitation is often restricted to happen 

near a “nose” temperature for various precipitates in different steel phases [139-143]. The 

equilibrium model is also unable to predict the size of precipitates, which is important for hot 

ductility [57, 60].  

It is generally acknowledged that the temperature history and alloy chemistry are 

important to determine the final precipitate properties [63-64,144-146].  The precipitation is also 

greatly accelerated by 10-1000 times with deformation strain [24, 147], such as occurs during 

controlled rolling, and a finer precipitate size distribution is also observed simultaneously [148, 

149]. This is because deformation introduces the favorable nucleation sites and diffusion paths of 

precipitation, such as dislocation networks and vacancy clusters. This kind of precipitation is 
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always named as “dynamic precipitation”, comparing with “static precipitation” when no 

deformation is applied. The precipitation is maybe hastened by a γ→α phase transformation 

because of the larger diffusion rate and smaller solubility limit of this precipitates in ferrite, 

which is well documented for AlN precipitation [1, 150]. This also causes “interphase 

precipitation”, which generally takes place at transformation interfaces during austenite 

decomposition and results in non-random dispersions of the precipitates in rows or sheets [151]. 

All of these factors determine the size distribution, spatial distribution and morphological 

characteristics of the precipitate particles, thus are important to influence the steel properties.  

There are growing needs to develop a kinetic model of the precipitate growth to describe 

the precipitation rate under non-equilibrium conditions, and to quantify the evolution of the 

particle size distribution with time, which is essential to make realistic predictions, especially for 

carbonitride precipitates in microalloyed steels. 

 
3.1 Previous Work 

An early effort to predict phase transformation kinetics is the KJMA model, by 

Kolmogorov [152], Johnson, Mehl [153] and Avrami [154], which is widely used to study 

precipitation processes and to generate Precipitation-Temperature-Time (PTT) diagrams. The 

general isothermal KJMA equation to describe transformed fraction, f, as a function of time, t, is 

given by [155] 

( ) 1 exp( )nf t K t= − − ⋅  (3.1) 

where K is the rate function for nucleation and growth which depends on chemical composition 

and temperature, and n is the Avrami exponent, typically ranging from 1-4, which depends on 

growth dimensionality (1-D, 2-D or 3-D), nucleation index (zero, decreasing, constant or 

increasing nucleation rate), and growth index (interface-controlled or diffusion-controlled).  The 

parameters K and n are determined from experimental measurements at different test 

temperatures and compositions, and often vary during precipitation.  Although this model has 

been further developed by Duit et al for isothermal precipitation of aluminum nitride and for 

non-isothermal continuous precipitation using additivity rule, and can match many precipitated 

fraction measurements [156], its empirical nature prevents it from describing alternate 

thermomechanical processes without refitting the parameters with further measurements.  
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Moreover, size distributions cannot be predicted in the original KJMA model, which is expanded 

later as so-called Populational KJMA model to enable a prediction of size evolution [157]. 

 
3.1.1 Classical Precipitation Kinetics Models-Sharp Interface Model 

The most exact and straightforward method of simulating precipitation kinetics is to solve 

the diffusion equation directly. By taking some assumptions to make the problem solvable, it 

causes the early development of classical precipitation models. These models treat precipitate 

particles to be cut from the precipitate phase and embedded into the matrix. The interface 

between the matrix and precipitate phase in these models is assumed to be mathematically sharp 

and zero in length, and concentration change from precipitate phase to interface is a step function. 

Thus these models are often called as “sharp interface model”. As shown in Figure 3.1, a 

precipitation process always includes induction period, nucleation, growth and coarsening stages, 

which are always separated to be modeled by in classical precipitation theories. 

 

Nucleation 

The nucleation often includes an incubation period to form stable nuclei, and the stable 

nuclei are continuously generated from the solid solution afterwards. Random thermal diffusion 

creates unstable clusters of chemically-bonded pseudomolecules called “embryos”, which grow 

into stable “nuclei” if they exceed a critical size, which makes the total free energy to decrease 

with increasing particle size.  

In the earliest theory on nucleation, Volmer and Weber [158] assumed that number of 

clusters larger than critical size decay artificially into zero. Becker and Döring [159] stated that a 

decay or dissolution of supercritical droplets, which is a little larger than critical size, becomes 

possible and these clusters are considered to belong to the size distribution by introducing 

Zeldovich factor [160]. The isothermal nucleation rate, J(t), which is the number of nuclei per 

unit volume per unit time, is suggested as [159]: 

*( ) exp expc

B

GJ t Z
k T t

τβ
⎛ ⎞∆ ⎛ ⎞= Θ − −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (3.2) 

where Θ is the number of active nucleation sites per unit volume, Z is the Zeldovich non-

equilibrium factor, β* is the atomic impingement rate at which atoms are attached to the critical 

nucleus, ∆Gc is the free activation energy for the formation of a critical nucleus, kB is 
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Boltzmann’s constant, T is the absolute temperature, τ is the incubation time for establishing 

steady state nucleation conditions and t is the isothermal precipitation time. The parameters Θ, Z, 

β*, ∆Gc and τ are all specific to the system and the type of nucleation process.  

For spherical precipitates, the parameters in nucleation model can be evaluated as [37]: 

D

c
ρ

Θ =  (3.3) 
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where ρD is the dislocation density, c is the lattice parameter of the matrix, rc and ic are the 

critical radius and number of a stable nucleus, D is the diffusion rate of precipitation, C0 is the 

initial concentration. The effect of deformation is considered into the model by using dislocation 

density as a fitting parameter. 

After incubation time, a steady nucleation rate is approached for the remaining time after 

t>>τ, as follows 

* exp c
s

B

GJ Z
k T

β
⎛ ⎞∆

= Θ −⎜ ⎟
⎝ ⎠

 (3.7) 

For the steady state nucleation, a constant nucleation rate causes the number of stable 

nuclei to linearly increase with time. With more nuclei form, the concentration of solutes in 

matrix decreases, which will cause a decrease of nucleation rate simultaneously. 

The evaluation of free energy is critical in the classical nucleation theory since it is 

embedded in an exponent term. The formation of a coherent spherical droplet with radius r which 

gives rise to some elastic coherency strains, leads to a change of free energy [161] 
3

24( ) ( ) ( ) 4
3chem el chem el
rG r V g g A g g rπξσ π ξσ∆ = ∆ + ∆ + = ∆ + ∆ +  (3.8) 

where negative chemg∆  is the volume chemical driving force for nucleation, elg∆  is the 

volume strain energy created from the formation of nucleus, σ is the interface energy between 

matrix/precipitate and ξ is a modified factor of interface energy falling between 0 and 1, 
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associated with relaxing of the lattice mismatch due to the presence of dislocations, grain 

boundaries or other defects in crystal structure. The first term which scales with r3 accounts for 

the gain of negative energy on forming the droplet, and second term which scales with r2 is an 

positive energy required to form the a new interface. As shown in Figure 3.2, a combination of 

these two terms makes the total free energy to be positive and increase at small size scale. After 

passing a maximum, the total energy continues to decrease with increasing size. It means that if a 

growing particle becomes larger enough to overcome this energy barrier, there is no obstacle to 

prevent its further growth. Thus it is stable and always tends to grow. On the other hand, a 

smaller particle needs extra energy to grow, thus it is unstable and tends to dissolve if it is below 

this critical size. 

The critical size of the nucleation, rc,  is obtained by differentiating the Eq. (3.8) 

2
c

chem el

r
g g

ξσ
= −

∆ + ∆
 (3.9) 

The critical free energy is thus given as  
3 3

2

16( )
3 ( )c c

chem el

G G r
g g

π ξ σ
∆ = ∆ =

∆ + ∆
 (3.10) 

The chemical driving force is generally approximated by supersaturation, which is given 

as [32]: 

0ln
[ ]

g
chem

P eq

R T Cg
V C

∆ = −  (3.11) 

where VP is the molar volume of precipitate phase, and [C]eq is the dissolved concentration of 

precipitate in matrix at equilibrium.   

For spherical particles, the elastic strain energy stored can be evaluated as [162] 

22
3 (1 )(2 3/(1 )) /(2 3/(1 )el M V

M M P P

g αµ δ
α α υ µ υ µ

∆ =
+ − + − + −

 (3.12) 

where  δV is the volumic dilatation associated with the elastic deformation, α=(1+υM)/3(1-υM), µ 

and υ are the shear modulus and Poisson’s ratio of material, and subscript “M” and “P” stand for 

the matrix and precipitate phase. 

Liu and Jonas [163] modified the steady nucleation theory to predict the starting time for 

the strain-induced precipitation of Ti(C,N) in austenite. The start time for precipitation is thus 

given as  
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where Nc is the critical number of nuclei, which must be formed for precipitation to be detectable. 

It could be chosen as a fitting parameter with experiments. The calculated precipitation start 

times are proved to match the experiments of Ti(C,N) [163] and Nb(C,N) [164] for various 

compositions and temperatures quite well. 

Other similar formulae were also developed. Detta and Sellars [165] derived a semi-

empirical model for stain-induced precipitation of niobium carbonitride. The effect of strain rate 

on precipitation was introduced by using the Zener-Hollomon parameters [166]. The 5% 

precipitation time of the total precipitated Nb(C,N) in austenite is proposed as 

1 1 0.5
5% 3 2

270000[ ] exp exp
(ln )H

Bt A Nb Z
RT T

ε− − − ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟ Π⎝ ⎠ ⎝ ⎠
 (3.14) 

where exp( / )HZ Q RTε=  is the Zener-Hollomon parameter, [Nb] is the soluble niobium content 

(wt%), ε is the strain, ε  is the strain rate, Π is the supersaturation, A and B are constants with 

optimum values by fitting the experimental data. It can be concluded that precipitation start time 

is inversely proportional to the strain and strain rate from the expression, which is consistent with 

experimental observations. 

The main shortcomings of the classical nucleation theory are that supersaturation is 

assumed as constant and the cluster size is assumed to distribute in the vicinity of the critical 

radius. But these assumptions are not consistent with the fact that many growing precipitates 

larger than the critical size gradually form and the supersaturation decreases continuously with 

the formation of stable nuclei in the nucleation stage, and may be only reasonable during the 

earliest nucleation stage. Moreover, a deterministic function of nucleation rate seems not suitable 

to describe the stochastic and random nature of nucleation. 

 
Growth 

After nucleation, the stable nuclei are embedded in a still supersaturated matrix. The 

particles are surrounded by a high concentration field which can provides adequate driving force 

for diffusion growth, and could cause all size particles to growh, which defines the classical 

growth stage. 

For diffusion controlled transformation of a particle in a spherically symmetrical system, 

Fick’s second law gives equation as follows 
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 (3.15) 

Assuming the precipitates uniformly distribute in a finite matrix, each particle is 

considered to locate at the center of a spherical cell with radius L, where 2L is the average 

distance between two neighboring particles. Let r be the average radius of the particle within the 

spherical cell. When L>>r, the solute concentration at the cell boundary is assumed to equal the 

matrix concentration CM, which changes slowly with time, Thus the boundary conditions are 

given as 

IC C when a r= =  (3.16) 

( )MC C when a L L r= = >>  (3.17) 

where CI is the solute concentration in the matrix at the particle/matrix interface. 

If CI and CM are assumed to be constant, the concentration profile could be determined by 

the stationary interface approximation developed by Whelan [167]. The diffusion field is 

assumed to have no memory of the past motion of the interface, thus the above equation could be 

solved for a≥r 
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2M I M

M

r a rC C C C erfc
a D t

⎛ ⎞−
− = − ⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.18) 

where erfc(x) is the complementary error function as  

( ) 22 exp( )
x

erfc x z dz
π

∞
= −∫  (3.19) 

From the mass conservation of the solute in the matrix, the flux of solute at the interface 

equals to the rate of loss or gain of solute in the precipitate. Thus the flux balance at the interface 

is written as [168] 

2 24 ( ) 4P I M
a r

Cr C C dr r D dt
a

π π
=

∂
− − = − ⋅

∂
 (3.20) 

where CP is the solute concentration in the precipitate phase. 

The velocity of the precipitate/matrix interface is obtained as 
1/ 2

M M I M M

a rP I P I

D C C D Ddr Cv
dt C C a C C r tπ=

⎡ ⎤−∂ ⎛ ⎞= = = +⎢ ⎥⎜ ⎟− ∂ − ⎝ ⎠⎢ ⎥⎣ ⎦
 (3.21) 
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Within a short period of time, the equation is a good approximation when both CI and CM 

change slowly and are close to be constants in this period. During calculation, both CI and CM are 

updated after each infinitesimal increment of time. 

Under steady state, the term with t-1/2 of the transient part can be ignored, and the above 

equation is simplified as  

M I M M

P I

C C D Ddr k
dt C C r r

−
= =

−
 (3.22) 

where the coefficient is defined as ( ) /( )M I P Ik C C C C= − − . It is seen from this equation that a 

particle grows only when k>0 and it dissolves when k<0. CP is normally a constant determined 

from precipitates phase composition. CM is only a function of time, but CI can be a function of 

precipitate size. Therefore for a multi-particle system, it is possible for some particles to dissolve 

while other particles to grow at the same time. The size of each individual particle ri could be 

determined by integrating the previous differential equation for each individual size. 

At the beginning of the precipitate growth, CM is much larger than CI when most solutes 

still dissolve in the matrix instead of being precipitated out. Size effect of CI is not so significant 

when computing the difference between CM and CI. Thus all particles can grow no matter what 

sizes they have at growth stage. Zener [169] initially assumed a mono-dispersive size distribution, 

and I eqC C=  for very large particles at t→∞, and 0MC C= . Thus integrating Eq. (3.22) yields 

1/ 2

0 1/ 2( ) 2 ( )eq
M

P eq

C C
r t D t

C C
⎛ ⎞−

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 (3.23) 

This relationship shows that the precipitate size grows with time according to a parabolic 

rate in the so-defined growth stage. However, the precipitation regime strictly following Eq. 

(3.23) seldom exists. The growth always consumes the dissolved solutes from matrix, and the 

matrix concentration, CM, continuously decreases with time. A possible correction to compute 

matrix concentration is that  

0
( )( ) V

M
P

tC t C
V
ϕ

= −  (3.24) 

where CM(t), φV(t) and VP are the transient matrix concentration, volume fraction and molar 

volume of precipitates. φV(t) can be estimated from the number density and size of precipitate, as 

follows 
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where “number density”, NV(t), is the number of precipitate particles per unit volume.  

The assumption of size-independent interface concentration is only valid for very large 

particles, which is contradictory with the fact that there are always very small particles with size 

around or below critical value in matrix. This factor can be considered by well-known Gibbs-

Thomson equation [170, 171], to describe the concentration at interface of each particle with its 

size in a dilute solid solution: 

2 1( ) exp P
I eq
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VC r C
R T r
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⎝ ⎠

 (3.26) 

where Ceq is the equilibrium concentration of solute with a plane interface, σ is the 

precipitate/matrix interfacial energy, Rg is the gas constant, and T is the absolute temperature. 

This equation indicates that an increase of particle radius causes the nearby solute concentration 

to decrease greatly.  According to Eq. (3.26), it is possible for small particle to dissolve, and 

large particles to grow simultaneously at a certain time, if the matrix concentration is between 

these two concentrations at interface. 

The capillary length, Lc, is defined as  

2 P
c

g

VL
R T
σ

=  (3.27) 

For typical precipitates in steels, σ=0.5J/m2, VP=1.2×10-5mol/m3, T=1000oC, the 

calculated capillary length is ~1.1nm, which is around 7 times of the single pseudomolecule for 

the same precipitate phase. In order to make CI(r) to approach the value of Ceq, the particles must 

have size larger than 20nm. 

The largest problem of Zener diffusion growth model is only describing the time 

evolution of precipitates with uniform size. However, a polydispersed precipitate size must be 

involved at the end of nucleation as well as the beginning of coarsening stage. Thus this model is 

not expected to correctly predict the measured growth kinetics quantitatively between the 

nucleation and growth stages even if they are well separated on the time scale. Instead, a size 

distribution of precipitate and the size-dependent concentrations are often necessary in 

calculation.  
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Coarsening 

Nature always involves particles with various sizes, not simply a uniform size, dispersed in 

the matrix. Once the supersaturation has decreased to approach equilibrium, a majority of solutes 

exists in the precipitate form and few solutes remain the matrix. Then capillary effects become 

important, causing a phenomenon called as coarsening or Ostwald ripening [172].  Governed by 

a minimization of the total surface energy, coarsening is driven by the difference in 

concentration gradients near precipitate particles of different sizes. The larger particles are 

surrounded by low concentration, so grow by diffusion from the high concentration surrounding 

smaller particles, which are less stable and shrink. Typical concentration profiles in growth and 

coarsening are shown in Figure 3.3. In growth, many solutes dissolve in matrix, and the matrix 

concentration is much larger than interface concentrations of both particles, thus it can make 

both particles to grow. Instead, this is not true anymore in coarsening, at which the solute 

concentrations in the matrix and at the precipitate/matrix interface are comparable. Only the 

larger particles that produce a lower solute concentration than matrix concentration can grow, 

and the smaller with a solute concentration higher than matrix concentration must shrink. These 

different diffusion directions of solute to distinguish the growth and coarsening are shown in 

Figure 3.4. As a result, the net number density of particles decreases with time. Usually, 

coarsening is considered to be the last stage of a precipitation reaction. But the capillargy effect 

actually exists for the entire precipitation process, and may become important in the growth stage, 

or even while the system is still in nucleation.  

The classical theory describing coarsening from the above ideas was derived 

simultaneously and independently by Lifshitz and Slyozov [173] and Wagner [174]. Their 

treatment is now often referred to as the LSW coarsening theory, and the main assumptions are: 

1). The volume fraction of precipitate is small. In such as dilute system, diffusional interactions 

between particles occurring in more concentrated alloys can be neglected, and particles only 

interact with the nearby matrix.  

2). The volume fraction of precipitates is kept as constant ,which means the decomposition is 

close to completion and equilibrium state is approached. No more free solutes exist in the matrix, 

and the larger particle can grow only by the shrinkage of smaller particles. Furthermore, a 

predetermined size distribution of particles is necessary to initialize coarsening, which limits the 

application of some nucleation and growth models with uniform size to simulate coarsening. 
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3). The particle size in coarsening is quite large, and the Gibbs-Thomson equation can be 

linearized as 

2 1( ) 1 P
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 (3.28) 

This linearized Gibbs-Thomas equation gives less than 5% error for particles of r>2.82Lc, 

but large errors are produced for very small particles. 

The LSW theory gives the following equations to describe the coarsening process: 
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where r  is mean precipitate radius at time t. These equations show that the third power of the 

mean particle size increases linearly with time, as opposed with squared in growth, which proves 

the coarsening is a much slower process. The number density of particles, NV, decreases with 

time, and the total volume fraction of precipitate, φV, is kept as a constant. 

The density function of particle size in LSW coarsening theory is given as 
7/3 11/324 3 1.5 /( ) exp 0 1.5
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This size distribution is predicted to be independent of the initial distribution, with a 

maximum particle size of 1.5 r . This distribution satisfies the normalization condition as follows 
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A more general form of coarsening kinetics is given by Sun et al [175]: 
1/

0 0( ) n
cr r K t t− = −  (3.34) 

where r0 is the mean precipitate radius at the initial time t0 when the coarsening starts, 

and Kc is the coarsening parameter. The denominator of the fractional exponent n in this 

equation depends on the specific rate-limiting mechanisms: n=3 if the coarsening is controlled by 
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bulk diffusion [173, 174], n=4 if controlled by grain boundary diffusion [176], or n=5 if 

controlled by pipe diffusion [177].  

 From the description of classical precipitation kinetic models, it has shown that some 

assumptions are idealized and not close to reality. Although these models capture some 

important mechanisms in each individual precipitation stage, there is no physical reason to split 

an entire precipitation process into the consecutive nucleation, growth and coarsening stages. 

The nucleation, growth and coarsening are always one continuous, competing and overlapping 

process especially when the size distribution evolves dramatically in a rather short period. 

Furthermore, some of these models only describe the time evolution of precipitates with uniform 

size, but it certainly has to deal with a dispersed precipitate microstructure in order to match the 

reality. The different precipitate size distributions even with the same mean size could have quite 

different pining effects to restrict the grain growth, which will be discussed in Chapter 5. 

In summary, there must be many mechanisms involving in precipitation, such as 

supersaturation, diffusion and capillary effect. The different mechanisms may become dominant 

in the different stage of precipitation. In order to treat incubation, nucleation, growth and 

coarsening as one continuous process, rather than consecutive stages on the time scale, many 

researchers tried to model the precipitation as more concomitant as possible within the 

framework of existing classical theories. This kind of model is firstly attempted by Langer, 

Schwartz and Kampmann, Wagner (LS or Modified LS model) [178, 179], and later by 

Kampmann and Wagner [180] (KWN Model).  

 

MLS Model 

For MLS model [178,179], only particles larger than the critical size are counted as 

precipitate phase, and the shape of size distribution is predetermined to match the LSW 

coarsening theory. The total number density and the mean size of precipitate are defined as NLS 

and LSr . Thus LS cr r>  holds for all stages of precipitation. An apparent density for particles with 

critical size is introduced as  

( , )a c LS
LS c

bf r t N
r r

=
−

 (3.35) 

The constant b=0.317 is chosen to match the LSW coarsening rate when t→∞. Due to the 

nucleation rate J and dissolution, LSN  changes with time as follows 
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The continuity equation requires 

3
0

4( )
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− = −  (3.37) 

The influence of the assumed shape of size distribution to match the LSW coarsening 

thoery in MLS theory is in doubt. Another shortcoming of MLS model is the assumption that 

only particles larger than critical size are counted as precipitated phase. In coarsening stage, the 

critical size continuously increases and approaches the mean precipitate size. This assumption 

causes that only few large particles are counted, but lots of particles with relatively smaller size 

are missing in this model. 

 
KWN Model 

In order to introduce fewer assumptions and get better accuracy, Kampmann and Wagner 

[180] had devised an algorithm from classical nucleation and growth theories, which is termed as 

the Numerical Model (KWN Model). Unlike the MLS model, the shape of size distribution is 

computed, instead of being assumed, and all particles no matter which are larger or smaller than 

critical size are counted. 

For the KWN model, the size distribution is subdivided into discrete intervals [rj, rj+1] 

with j+1 j jr -r /r <<1, and Nj particles in the j-th interval with mean size jr .  

The total number and mean radius of precipitate particles are defined as 
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The continuity equation in the N model requires 
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The equations (3.21), (3.24) and (3.26) are used for calculation, and the particles with 

different size have different growth rate. It treats the classically defined “growth” and 

“coarsening” stages as one continuous process, and causes all particles to grow at the beginning 

of process, and large particles to grow and small particles to shrink later. The nucleation rate 

calculated from Eq. (3.2) and (3.11) needs to be revised to consider influence of a decreasing 

matrix concentration during precipitation. The initial concentration must be replaced by the 

transient value, thus the nucleation rate continuously decreases and reaches zero when the 

transient concentration becomes equal to the equilibrium value. The time steps in calculation are 

chosen in such a way that within each corresponding time interval the changes of all radius and 

concentrations remain sufficient small. Thus both the nucleation and growth rates can be 

considered as being constant in each time step.  

The KWN model is believed to be the best combined and most accurate one from the 

classical precipitation theories, especially when an accurate description of nucleation is available 

or a previous size distribution has existed. It is widely modified and applied to simulate 

precipitation of AlN in austenite and on grain boundaries of low-carbon steels [168], Nb(C,N) in 

austenite [164], and NbC on dislocations in ferrite [181].  From a comparison with experimental 

data of precipitated fraction and size distribution, the N model is also used to determine the 

crucial precipitation parameters which are difficult to measure, such as diffusion coefficient and 

interface energy of the particular alloy system [180, 182], or evaluate the applicability of other 

kinetic models of precipitation [180, 183].  

The main shortcoming of KWN model is still to require a deterministic time and 

concentration dependent function to describe the nucleation rate, and its ability to count the 

stochastic nature of nucleation is in doubt.  

 
3.1.2 Recent Modeling Developments of Precipitation Kinetics 

Taking advantage of faster computers, more computational models of precipitation 

kinetics have recently been developed. All of these models aim to simulate the precipitation as 

continuous as possible based on the fundamental physics. These new tools include kinetic Monte 

Carlo model, phase field method, Matcalc method and cluster dynamics model. 

 

Kinetic Monte Carlo Model 
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At the atomic scale, kinetic Monte Carlo model statistically describes the diffusion 

through vacancy jumps toward nearest-neighbor atoms, and the vacancy exchange frequency is a 

thermal activated function as follows 

0 exp X
XV X

B

Qv
k T

⎧ ⎫∆
Γ = −⎨ ⎬

⎩ ⎭
 (3.42) 

where 0
Xv  is an attempt frequency, which is assumed to depend on the nature of the atoms 

X. The activation energy XQ∆  is the energy change required to move the atom X from its initial 

stable position to the saddle point position. At each Monte Carlo step, a vacancy can undergo 

exchange with its nearest neighbors for the substitutional atoms, and the interstitial atom can 

exchange its site with nearest free interstitial sites. One of these exchanges is chosen according to 

the residence time algorithm described elsewhere [40]. The total energy of the system is counted 

as the sum of pair interaction energies, and it decreases and finally reaches a minimum in 

simulation.  

The calculation of Monte Carlo model is always limited in a small scale, thus it can be 

only suitable for very fine particles, especially the early nucleation stage. Some applications are 

illustrated by the kinetics simulation of Al3Zr and Al3Sc in aluminum [41], and Y2O3 in ferrite 

[42]. The largest size of precipitates is often limited to be less than several hundred atoms. 

 
Phase Field Method 

The main idea in phase field method is that microstructure evolution takes place to reduce 

the total free energy. It describes microstructure as a whole by using a set of continuous field 

variables, and becomes one of the most powerful methods for modeling microstructure.   

For an isolated precipitate phase growing into a matrix phase, this two-phase 

microstructure is described in terms of composition C(r,t) (conserved variable) and order 

parameter η(r,t) (non-conserved variable) in a periodic domain. The order parameter η is defined 

in such a way that η=0 for matrix phase, η=1 for precipitate phase, and 0<η<1 for the 

matrix/precipitate interface.   

The chemical free energy could be given by the following function 
2 2[ ( , ) ( ) ( ) ]chem V CV

G N g C C dVηη κ κ η= + ∇ + ∇∫  (3.43) 
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where ( , )g C η  is the bulk free energy per atom, Cκ  and ηκ  are the energy coefficients for 

composition gradients and order parameter, respectively.  

The bulk free energy density can be given by  
2 2( , ) ( )(1 ( )) ( ) ( ) (1 )M Pg C g C W g C W Pη η η η η= − + + −  (3.44) 

where gM(C) and gP(C) are the free energies of matrix and precipitate phase, W(η) is an 

interpolation function of order parameter, and P is a constant describing the height of the free 

energy barrier between the matrix and precipitate phase.  

The elastic contribution to the free energy is  

1 ( ) ( )
2el ij el ij elV

G dVσ ε= ∫  (3.45) 

where elσ  and elε  are elastic stress and strain tensors, respectively. The microstructure evolution 

is governed by the Cahn-Hillard equation [184] and Allen-Cahn equation [185]: 

( )C M
t

µ∂
= ∇ ⋅ ∇

∂
 (3.46) 

( / )VF NL
t
η

η
∂∂

= −
∂ ∂

 (3.47) 

where M is the atomic mobility, µ is the chemical potential and L is the relaxation coefficient for 

the order parameter. Chemical potential µ is defined as the variational derivative of the total free 

energy per atom with respective to the local composition: 

( / )VF N
C

µ ∂
=

∂
 (3.48) 

A thin interface with finite thickness is always described in phase field method, instead of 

a sharp interface in classical precipitation models. Some application of phase field model could 

be found for effects such as strain, interface curvature and diffusivity on growth of an isolated 

precipitate in a supersaturated matrix [43, 44], and M23C6 carbide in steel [45].   

 

Matcalc Method 

Recently, a commercial precipitation-kinetics software package, Matcalc, has been 

developed based on thermodynamic extremum principles [46-48]. The evolution of the system is 

governed by the following set of equations [186, 187] 
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1
2i i

G Q
q q
∂ ∂

= −
∂ ∂

 (3.49) 

where G is the total Gibbs energy of the system, Q is total Gibbs energy dissipation rate, 

and qi are the suitable independent state parameters of a closed system.  

The system consists of a matrix and precipitates. There are s substitutional components 

and p interstitial components in the system, and the total number of components n=s+p is fixed. 

Let χi (i=1,…,n) be a fixed number of moles of component i, m the number of precipitate in the 

system, rk (k=1,…,m) the radius of a spherical precipitate k, uki (k=1,…,m,i=1,…,n) the mean 

site fraction of component i in the precipitate k.  

For simplicity, the partial molar volumes of the substitutional components are the same 

for all substitutional components in all phases and partial molar volumes of all interstitial 

components are zero. When site fraction of vacancies is negligible, the volume corresponding to 

one mole of site positions is set as Ω, which is independent of the chemical composition and 

phase. The mean concentration in the precipitate, kiC  (k=1,…,m, i=1,…,n) can be calculated as 

kiC , 1,..., , 1,...,kiu k m i n= − = =
Ω

 (3.50) 

The number of moles and the mean concentration of component i in the matrix are given 

as 
3

Mi 0,
1

4N , 1,...,
3

m
k ki

i
k

r CN i nπ
=

⎛ ⎞
= − =⎜ ⎟
⎝ ⎠

∑  (3.51) 

,
Mi

.
1

C , 1,...,M i
s

M i
i

N
i n

N
=

= =
Ω∑

 (3.52) 

where 0,iN  is the number of moles of component i. The system is uniquely described by 

the state parameters m, rk (k=1,…,m) and Cki (k=1,…,m, i=1,…,n). Let µMi (i=1,…,n) be the 

chemical potential of component i in the matrix and µki (k=1,…m, i=1,…,n) be the chemical 

potential of component i in the precipitate k. All of these chemical potentials can be expressed as 

functions of the concentrations and unknowns. The total Gibbs energy of the system is given by  
3

2

1 1 1 1

4 ( ) 4
3

n m n m
k

M i M i k ki ki k k
i k i k

rG N C rπµ λ µ π σ
= = = =

= + + +∑ ∑ ∑ ∑  (3.53) 
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where σk is the interface energy and λk accounts for the contribution of the elastic energy 

and plastic work due to volume expansion of precipitates. By this definition, / iG q∂ ∂  ( iq  

includes rk, k=1,…,m and Cki, k=1,…,m, i=1,…,n) in Eq. (3.49) can be calculated, which 

represent generalized driving forces for the state parameters.  

The total Gibbs energy dissipation rate in Eq. (3.49) is also required to be evaluated. It 

includes three parts: migration of interfaces characterized by their mobolities Mk, k=1,…,m;  

diffsuion of all components in the precipitates characterized by diffusion coefficients Dki, 

k=1,…,m, i=1,…,n; diffusion of all components in the matrix characterized by diffusion 

coefficients DMi, i=1,…,n. These contributions to energy dissipation are thus evaluated as  
2

1
1

4n
k k

i k

r rQ
M
π

=

=∑  (3.54) 

2 2
2 0

1 1
4k

m n r

ki
k i ki ki

RTQ r j dr
c D

π
= =

=∑∑∫  (3.55) 

2 2
3

1 1
4

k

m n

kir
k i M i M i

RTQ r J dr
c D

π
∞

= =

=∑∑∫  (3.56) 

The radial diffusive flux in the precipitate (jki), at the precipitate/matrix interface ( *
kiJ ) 

and in the matrix surrounding the precipitate (Jki) are suggested as 

, 0
3

ki
ki k

rcj r r= − ≤ ≤  (3.57) 

2 3 3
*

2 3 3 ,k
ki ki k

k

r Z rJ J r r Z
r Z r

−
= ≤ ≤

−
 (3.58) 

* ( )
3

k ki
ki k M i ki

r CJ r C C= − −  (3.59) 

where Z>>rk. According to these definitions, the terms / iQ q∂ ∂  in right side of Eq. (3.49) 

can be also evaluated. Thus these equations give the change rate of kr  and kiC , and the new 

values of kr  and kiC  are able to be computed at a new time step. 

The largest benefit of Matcalc method is to determine the kinetics of the multi-

component system without the necessity of knowing the concentration profiles and the constant 

conditions for chemical potentials at the migrating interface. It offers an easy approximate 

solution to the kinetics of the precipitation of different composition and different sizes with a 
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sufficient accuracy. It is suitable for application to complex systems. But Matcalc also requires a 

proper theory of multiphase nucleation to start the simulation, which may limit the application of 

Matcalc method. Some details and applications of Matcalc for precipitation, including separate 

models within the matrix [46, 47], and on the grain boundaries [48] are available elsewhere.  

 

Cluster Dynamics Model 

In cluster dynamics, the system is seen as a gas of mesoscopical clusters, or called 

“nanoparticles”, made of monomers that can be solute atoms, vacancies, self-interstitial atoms. 

The total volume fraction occupied by the clusters must be small. The evolution of clusters of 

each size is treated within the framework of the chemical rate theory, and no explicit laws for the 

individual nucleation, growth and coarsening stage is required.   

A fundamental assumption of cluster dynamics is that exchanges between clusters 

involve only monomers. Reactions between neighboring clusters are considered by the 

condensation and evaporation rates, based on a thermodynamic model of the free energy of the 

system [49-51]. The evolution of clusters of size i>1 is coupled with its two adjacent neighbors 

as follows 

1 1 1 1( ) ( )i i i i i i i iC C C Cα β α β+ + − −= + − +  (3.60) 

where Ci is the atomic concentration of clusters of size i, iβ  and iα  are called as “condensation 

rate” and “evaporation rate”, which are the probability for one solute atom to impinge and leave 

a cluster of size i per unit time.  

The condensation rate is obtained by solving the diffusion problem in the solid solution 

around a spherical precipitate. The stationary diffusion equation in a spherical coordinate is 

given as 

2 1
2

( )1 0C rD r
r r r

∂∂ ⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠
 (3.61) 

The boundaries conditions are set as 1( ) 0iC r r= =  at the matrix/cluster interface and 

1 1( )C r C∞= ∞ =  far away from the cluster. It is worth to mention that the actual monomer 

concentration should equal to the corrected value from Gibbs-Thomson equation (3.26). Taking 

this concentration as zero here is to assume that the cluster does not emit any monomers. 

The monomer concentration around the precipitate is solved as 
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1 1( ) ,i
i

r rC r C r r
r

∞ −
= >  (3.62) 

The condensation rate is given by integrating over the cluster surface of the incoming 

flux of monomers 

2 1
14 4

i

M M
i i i

r r

D C Dr r C
r

β π π ∞

=

∂
= − =

Ω ∂ Ω
 (3.63) 

The evaporation rate is obtained assuming that it is an intrinsic property of the cluster and 

therefore does not depend on the solid solution surrounding the cluster. In an under-saturated 

solid solution of nominal concentration eqχ  at equilibrium, the cluster size distribution is given 

by  

, ( ) exp ( 2 ( )) / )i eq eq i eqC G i kTχ µ χ⎡ ⎤= − −⎣ ⎦  (3.64) 

where Gi is the free energy of a cluster containing i monomers, and ( )eqµ χ  is the effective 

chemical potential in the solid solution, which is half the difference between the chemical 

potentials of the solute and the solvent atoms. At equilibrium, all fluxes between size i and size 

i+1 clusters are zero.  

,
1 1, ,

1,

( )
( ) ( )

( )
i eq eq

i i eq eq i eq eq
i eq eq

C
C

χ
α α χ β χ

χ+ +
+

= =  (3.65) 

It finally leads to the following expression of the evaporation rate 

( )1 1 14 exp /M
i i i i

Dr G G G kTα π+ +⎡ ⎤= − −⎣ ⎦Ω
 (3.66) 

For Al3Zr and Al3Sc, the cluster formation free energy into a volume and interface 

contributions: 
2 1/3 22 ( ) 4 ( ) (36 )i eq nuc eq iG i i G i cµ χ χ π σ− = ∆ +  (3.67) 

where nucG∆ is the nucleation free energy, which is the free energy change when nucleating a 

precipitate out of the solid solution. iσ  is the interface free energy of cluster containing i solute 

atoms, and c is lattice parameter. Thus evaporation rate is given as: 

( )1/ 3 2 2/ 3 2/3
1 1 14 exp (36 ) ( 1) /M

i i i i B
Dr c i i k Tα π π σ σ σ+ +

⎡ ⎤= + − −⎣ ⎦Ω
 (3.68) 

The evaporation rate is shown to be independent of the nucleation free energy, which is 

important in the classical nucleation theory but play no role in cluster dynamics model.  
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The largest benefits of cluster dynamics are that it describes the precipitation as one 

continuous process, and does not require explicit laws for the individual nucleation, growth or 

coarsening stages. Due to its low computer cost, it claimed to have the potential to link between 

atomistic simulations and macroscopic models, and can handle long term evolution that cannot 

be obtained by Kinetic Monte Carlo or phase field methods [49]. The main drawback of cluster 

dynamics is its inability to cover the vast size scales.  Further drawbacks are of hypothesizing of 

uniform distributions of clusters, and no explicit consideration of spatial correlations between 

clusters [188].   

 
3.1.3 Continuous Model 

In order to simulate the precipitation as a continuous process, the fundamental models 

such as Smoluchowski [189] and Kampmann [190] are attractive because the particles 

agglomerate automatically, particles of all sizes are tracked, and the few parameters come with 

physical significance. The fundamental unit of these models is “pseudomolecule”, which is an 

“embryo” or stoichiometric cluster of atoms consisting of as few as a single metallic/interstitial 

atom pair. The evolution of number of particles per unit volume, or called as “number density” is 

the key parameter to determine. 

 

Particle Collision Model  

Collisions between particles and rapid diffusion in the liquid phase increase the number of 

large particles, and enhance inclusion removal by flotation.  The population balance model for 

collision first suggested by Smoluchowski is [189]: 
1

, ,
1 1

1
2

i
i

k i k k i k i i k k
k k

dn n n n n
dt

− ∞

− −
= =

= Φ − Φ∑ ∑  (3.69) 

where ni is the number of size i particles per unit volume, or “number density”, and Фi,j is the 

collision frequency between size i and size j particles.  The first term on the right-hand side 

generates size i particles due to the collision of two smaller particles, and the second term 

decreases the number of size i particles by their collision with particles of any size to become 

larger particles.  The generation term is halved to avoid counting collision pairs twice.  However, 

when two particles generating size i particles have same size, the generation term should not be 

halved because the collision pair is unique.   Moreover, the loss term should be doubly counted 
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when size i particles collide with themselves.  The number of pseudomolecules composing the 

largest agglomerated particle must be a finite number iM in numerical computation.  Making 

these appropriate changes gives the following improved expression: 
1

, , , ,
1 1

1 (1 ) (1 )
2

Mii
i

k i k k i k k i k i i k i k k
k k

dn n n n n
dt

δ δ
−

− − −
= =

= + Φ − + Φ∑ ∑  (3.70) 

where δi,k is the Kronecker delta, δi,k=1 for i=k and δi,k=0 for i≠k. When i=1, the population 

balance for dissolved single pseudomolecules simplifies to: 

1
1 1, 1,

1
(1 )

Mi

k k k
k

dn n n
dt

δ
=

= − + Φ∑  (3.71) 

Thus the number density of single pseudomolecules always decreases with collisions. This 

model has been successfully applied for various collision mechanisms, including turbulent 

collision [191], Stokes collision [192], Brownian collision [193] and gradient collision [194]. 

The mass is proved to be conserved if iM is chosen to be large enough, by satisfying the 

following equation 

 
1

0i

i

dni
dt

∞

=

=∑  (3.72) 

Evaluating equations (3.70)-(3.71) requires summing over and tracking every possible size 

from 1 to iM pseudomolecules, so is not practical for realistic particle sizes.  Results from these 

equations, however, comprise the exact solution for collision test problems. 

 

Precipitate Particle Diffusion Model 

Kampmann [190] suggested the following diffusion-controlled model to treat the kinetics 

of nucleation, growth and coarsening as one continuous and simultaneous process:  

1 1 1 1 1 1 1 ( 2)i
i i i i i i i i i i

dn n n n n A n A n i
dt

β β α α− − + + += − + − + ≥  (3.73) 

where βi, αi and Ai are the diffusion growth rate, dissociation rate and reaction sphere surface 

area for a size i particle containing i pseudomolecules.  A pseudomolecule (or called a 

“monomer” [195, 196]) is a stoichiometric cluster of atoms that consists of as few as a single 

metallic/interstitial atom pair.  Random thermal diffusion creates unstable clusters of chemically-

bonded pseudomolecules called “embryos”, which grow into stable “nuclei” if they exceed a 

critical size.  The first and second terms on the right-hand side account for the loss and 
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generation of size i particles due to “diffusion growth” by adding a single pseudomolecule to size 

i and i-1 particles respectively.  The third and fourth terms account for the loss and generation of 

size i particles due to particle “dissociation” by losing a single pseudomolecule from size i and 

i+1 particles respectively.  For single pseudomolecules, i=1, the special cases of double loss 

when two pseudomolecules react with each other and double generation of single 

pseudomolecules when size 2 particles dissociate are not counted exactly in Kampmann’s initial 

work.  Thus the following revised balance equation is suggested here: 

1
1 1, 2,

1 2
(1 ) (1 )

M Mi i

k k k k k k k
k k

dn n n A n
dt

δ β δ α
= =

= − + + +∑ ∑  (3.74) 

Assuming a uniform spherical concentration field of single pseudomolecules with a 

boundary layer thickness approximated by ri around each size i particle, the diffusion growth rate 

of size i particles is expressed by [190]: 

4i M iD rβ π=  (3.75) 

where D is the diffusion coefficient in the matrix phase, and ri is the radius of size i 

particles. As precipitation reactions always involve more than one element, this coefficient is 

chosen for the slowest-diffusing element, which is assumed to control the diffusion rate. As 

shown in Table 3.2 and Figure 3.5, the diffusion of interstitial elements such as O, S, N and C is 

much faster, so the diffusion rate is usually determined by the diffusion coefficient of the 

alloying metal element in the precipitate.  

The following relation is assumed for the dissociation rate, which is the number of 

pseudomolecules lost per unit surface area of size i particles per unit time, based on a mass 

balance of a particle in equilibrium with the surrounding matrix phase [190]: 

1 1/ /i i i i M i in A D n rα β= =  (3.76) 

The concentration of single pseudomolecules, n1i, in equilibrium around the surface of the 

size i particle is needed to evaluate this equation.  It is estimated using the Gibbs-Thomson 

equation, and decreases with increasing particle size as follows [170, 171]: 

1 1,
2 1exp P

i eq
g i

Vn n
R T r
σ⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.77) 
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where n1,eq is the number density of dissolved single pseudomolecules in equilibrium 

with a plane interface of the precipitate phase. This equation indicates that increasing particle 

radius causes the nearby solute concentration to decrease greatly, by several orders of magnitude.   

The balance is also satisfied for a large iM by satisfying 

1
0i

i

dni
dt

∞

=

=∑  (3.78) 

Equations (3.73)-(3.77) include the effects of equilibrium, diffusion growth, dissociation, 

curvature effects and mass conservation, with parameters all having appropriate physical 

significance.  Results from these equations are regarded as the exact solution for diffusion test 

problems. 

It is worth to notice that the above equations are completely identical to those of cluster 

dynamics model after transforming concentrations to the number densities, except that the 

definitions of “dissociation rate” and “evaporation rate” are different. Both two rates reflects a 

decreasing interface concentration with increasing size, but the different quantity and influence 

of two terms on the precipitation kinetics are not clear yet, and may be compared and discussed 

in future. Similar to cluster dynamics, the free energy of nucleation is not explicitly shown in this 

model. The evolution of all particles is determined by the same differential equations, and 

whether the particle becomes stable or unstable is determined by the model itself. 

 
3.1.4 Introduction of Particle-Size-Grouping Method 

The pseudomolecule-based models described above are attractive because the particles 

evolve automatically without any explicit laws for individual stage in precipitation, particles of 

all sizes are tracked, and the few parameters are fundamental physical constants themselves. 

Unfortunately, these models encounter inevitable difficulties when they are applied to simulate 

the precipitation in real materials such as steel, where the precipitate particle size ranges greatly 

from a single “pseudomolecule” of ~0.1nm, to coarsened particles larger than 100µm. Realistic 

particles range in size over at least 6 orders of magnitude, and contain from 1 to 1018 

pseudomolecules.  With such an overwhelming linear scale, it is impossible to solve realistic 

problems using traditional models based on pseudomolecules.  

Attempting to overcome this difficulty, the Particle-Size-Grouping (PSG) method has been 

introduced in several previous studies and has proven to be very effective in calculating the 
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evolution of particle size distributions for collision-coagulation growth over a large size range 

[203-208].  Rather than tracking each individual particle size, the main idea of this technique is 

to divide the entire possible particle size range into a set of size “groups”, each with a specific 

mean size and size range.  Careful attention is required to formulate the equations to ensure 

proper interaction and mass conservation [203]. Several researchers have applied the PSG 

method to simulate inclusion agglomeration in liquid steel due to collisions, coagulation and 

removal.  Such models have been applied to RH degassers [204], continuous casting tundishes 

[205, 206] and ladle refining [207, 208].  To start these PSG models, an initial size distribution is 

often required, which can be found from either experimental measurements or assumptions.   

To make the PSG method more usable, Nakaoka et al. [209] used different volume ratios 

between neighboring size groups to test the accuracy of PSG method, and took advantage of the 

exponential increase in sizes that accompany powers of 2. This innovation allows modeling from 

single monomers to realistic particle sizes with only 20-80 size groups.  Particle collisions were 

modeled, considering both inter-group and intra-group interactions, and numerical results agreed 

well with experimental agglomeration curves for various particle concentration and agitation 

speeds.   

However, very little work has been done to apply the PSG method to diffusion, which is 

the dominant mechanism for precipitate growth in many processes including steel casting and 

rolling. The particle size may not be actually be expanded by addition of one pseudomolecule in 

the size group manner because addition of a monomer to a particle in a certain group can seldom 

support enough particle growth to jump into the neighboring larger size group. This is apparently 

inconsistent with real precipitation kinetics. One study by Zhang and Pluschkell [210], coupled 

both collision and diffusion into a PSG model, but inter-group diffusion was not considered, and 

thus diffusion itself still can never make particles to grow into the neighboring larger group.  

Zhang [195, 196] included a discrete-sectional technique by Gelbard [211] and Wu [212] into the 

PSG model, but this introduces a discrete regime before PSG-sectional regime which linearly 

increases with number of containing monomers and thus weakens the efficiency of the PSG 

method itself. The inter-group diffusion was considered by assuming a uniform size distribution 

in every size group, which is often not a good estimation and may give a poor accuracy 

comparing with real distribution. No previous study has demonstrated an accurate simulation and 

an insurance of mass conservation of diffusion only by using an efficient PSG method. 
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The purpose of this chapter is to develop accurate, robust, and versatile PSG methods to 

simulate precipitate growth due to both collision and diffusion mechanisms.  The standard PSG 

method for collision problem is developed first, and a new PSG method for diffusion is created.  

Both methods are verified by comparison with exact solutions of the primary population 

equations in test problems.  The new PSG method is shown to be a very time-efficient 

calculation using a small number of size groups with complete mass balance and high accuracy. 

The new PSG method is applied to simulate several practical precipitation processes in solid 

steels, and compared with experimental measurements. Finally, the influence of the different 

variables on precipitation kinetics is discussed. Some of these works have been published in a 

previous paper [213]. 

 
3.2 Introduction of Particle-Size-Grouping Method 

From a theoretical point of view, the pseudomolecule-based population-balance models 

in the previous sections are accurate and the integration of their set of governing equations is 

straight forward. However, the computational cost quickly becomes infeasible for realistic 

particle sizes. The PSG method is introduced here to overcome this difficulty.  The fundamental 

concept of the PSG method is shown schematically in Figure 3.6.  In this method, the particles 

are divided into different size groups (size group number j) with characteristic volume Vj and 

characteristic radius rj.  The number density of particles of size group j is defined as 

, 1 1,

( )
j j j j

j
V V V

N n V
+ −> >

= ∑  (3.79) 

This summation covers all particles whose volume lies between two threshold values.  The 

threshold volume that separates two neighboring size groups, Vj,j+1, is assumed to be the 

geometric average of the characteristic volumes of these two groups, instead of the arithmetic 

average used in previous works [209, 210]: 

, 1 1j j j jV V V+ +=  (3.80) 

If a newly-generated particle has its volume between Vj-1,j and Vj,j+1, it is counted in size 

group j.  The increase of number density of size group j particles is then adjusted according to 

the difference between the volume of the new particle and Vj, in order to conserve mass.   

The volume ratio between two neighboring size groups is defined as 
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1j
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V
R

V
+=  (3.81) 

To generate regularly-spaced threshold values, RV is usually varied.  However, for constant 

RV, the PSG characteristic and threshold volumes can be simply expressed as: 
1

1
j

j VV R V−= , ( 1/ 2)
, 1 1

j
j j VV R V−

+ =  (3.82) 

where the volume of the unit cell that contains one single pseudomolecule, V1, is computed using 

the molar volume of its precipitate crystal structure, VP: 

1
P

A

VV
N

=  (3.83) 

where NA is Avogadro’s number, and the small effects of temperature change and vacancies are 

neglected.  Since V1 is the volume of the unit cell instead of single pseudomolecule, 

consideration of the packing factor is not needed.  The number of pseudomolecules contained in 

a given PSG volume is  

1
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+ =  (3.84) 

In the PSG method, it is easy to introduce fractal theory to consider the effect of particle 

morphology.  The effective radius of a particle can be expressed by  
1/

1
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V
r r

V
⎛ ⎞
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⎝ ⎠

 (3.85) 

where Df is the fractal dimension, which can vary from 1 (needle-shaped precipitates) to 3 

(complete coalescence into smooth spheres).  Tozawa [214] proposed Df=1.8 for Al2O3 clusters 

in liquid steel, and Df=3 is adopted everywhere in this thesis for simplicity.    

After the number of single pseudomolecules composing the largest agglomerated particles 

iM is determined, the corresponding total number of size groups GM must be large enough for the 

second largest size group to contain the largest agglomerated particle, iM.  Thus, for constant RV, 

GM must satisfy: 

(log ) 2
VM R MG ceil i≥ +  (3.86) 

The largest size group is a boundary group which always has zero number density.  The 

accuracy of the PSG method should increase with decreasing RV, as more size groups are used.  

From the logarithm relation shown above, it can be seen that the PSG method is very efficient for 
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real problems with a large range of particle sizes. For example, Table 3.1 shows the relationship 

between the particle size and size group for constant RV=2 and RV=3 for precipitate AlN. The 

calculation indicates in order to cover the particle size up to 100µm, it only needs a number of 

less than 60 groups for RV=2 and 40 groups RV=3.  

 
3.2.1 PSG Method for Collision 

Applying the PSG method to model colliding particles involves the following rules, 

affecting size group j:  

1). A size group j particle colliding with a small particle, from group 1 to kc,j, remains in group j, 

and increases the number density, Nj. 

2). A group j particle colliding with a relatively large particle, from a group larger than kc,j, 

generates a particle in group j+1 or higher. 

3). A group j-1 particle colliding with a particle from group kc,j to j-1 generates a group j particle. 

Combining these rules gives the following equation, where the coefficients involving mean 

volumes are needed to conserve volume, 
,
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 (3.88) 

The RV ranges in Eq. (3.89) are found by solving the following equations, after inserting 

the Eq. (3.83) expressions: 

, 1 , 1c jj k j jV V V+ ++ >  (3.89) 

Finally, the number density of single pseudomolecules is calculated by 

1
1 1, 1,

1
(1 )

MG

k k k
k

dN N N
dt

δ
=

= − + Φ∑  (3.90) 

→ + j j +j m>j 

j-1≥k≥kc,j 

k →+j-1 j k≤kc,j k>kc,j →
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Equations (3.87), (3.88) and (3.90) are integrated over time for all size groups. The small 

number of size groups enables the model to simulate practical problems. 

 

3.2.2 PSG Method for Diffusion 

Applying the PSG method to solid-state diffusion processes would appear to involve fewer 

rules than the particle collision method just presented, because precipitate growth by diffusion 

involves gain or loss of only one individual pseudomolecule at a time.  However, adding a single 

pseudomolecule to a particle very rarely gives enough particle growth to count it in the next 

larger size group.  In addition, size groups j-1, j and j+1 all influence the evolution of size group 

j number density for a given time interval.  Thus, some knowledge of the particle distribution 

inside each size group is necessary, especially near the size group thresholds where the inter-

group interaction occurs. It requires careful consideration of diffusion growth and dissociation 

both inside and between size groups. Some previous work [195, 196] assumed a uniform size 

distribution inside each size group, and the number density of particles near thresholds can be 

easily estimated by the total number density and the covered interval of each size group, but this 

assumption apparently can seldom match the real size distribution, thus a better estimation of 

these number densities for intra-group diffusion is required. 

All particles inside a size group j will still stay in group j even after a diffusion growth or 

dissociation event, except for those “border sizes” which fall on either side of the threshold sizes 

which define the neighboring size groups: L
jn  (closest to Vj-1,j) and R

jn (closest to Vj,j+1).  Size 

group j particles also can be generated if particles 1
R
jn −  from size group j-1 jump into size group j 

by diffusion growth or particles 1
L
jn +  from size group j+1 fall into size group j by dissociation.  

At the same time, size group j particles can be lost if particles R
jn  jump to size group j+1 by 

diffusion growth or particles L
jn  fall to size group j-1 by dissociation.  These considerations are 

incorporated into a new PSG method, taking care to conserve mass, as follows [213]: 

1 1
1( ) ( )j R L

j j j j j j j
j j

dN m mN N n A N n
dt m m

β α= − − −  

1, , 1
1 1 1 1 1 1

( ) ( )j j j jR R L L L
j j j j j

j j

ceil m floor m
N n A n

m m
β α− +

− − + + ++ +  
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, 1 1,
1

( ) ( )
( 2)j j j jR R L L L

j j j j j
j j

floor m ceil m
N n A n j

m m
β α+ −− − ≥  (3.91) 

where L
jn  is the number density of those particles in size group j which fall into size group j-1 by 

losing one pseudomolecule, and R
jn  is the number density of those particles in size group j which 

jump into size group j+1 by gaining one pseudomolecule.  Function ceil calculates the smallest 

integer which is not less than the given real number, and floor for the largest integer which is not 

larger than the given real number.  In Eq. (3.91), the first and second terms on the right-hand side 

account for the diffusion growth and dissociation inside size group j, and the third and fourth 

terms account for the generation of size group j particles by inter-group diffusion growth and 

dissociation of neighboring groups.  The last two terms are for loss of size group j particles due 

to the diffusion growth and dissolution of size group j particles themselves. 

 Single pseudomolecules are a special case because they comprise the only group which 

interacts with all other size groups.  Thus, the new PSG method for diffusion uses the following 

population balance equation for j=1:  

.1
1 1,

1 2
(1 ) ( ) ( )

M MG G
R L

k k k k k k k k
k k

dN N N n A N n
dt

δ β α
= =

= − + − + −∑ ∑  

1 1, 2,
1 2
(1 ) (1 )

M MG G
R R L L L

k k k k k k k
k k

N n A nδ β δ α
= =

− + + +∑ ∑  (3.92) 

No matter what the values of number densities L
jn  and R

jn  for the border size are chosen, 

the mass is proved to be conserved in PSG method by satisfying 

1

0j
j

j

dN
m

dt

∞

=

=∑  (3.93) 

The diffusion growth rate βj, and dissociation rate αj of size group j particles needed to 

solve Eqs. (3.91)-(3.92) are calculated with Eqs. (3.75)-(3.77) using the characteristic (mean) 

radius given by Eq. (3.85).  The radius, diffusion growth rate, and dissociation rate for the 

border-sized particles are:  

( )( )1/

1, 1
fDL

j j jr ceil m r−= , ( )( )1/

, 1 1
fDR

j j jr floor m r+=  (3.94) 

4L L
j M jD rβ π= , 4R R

j M jD rβ π=  (3.95) 



80 
 

1, 2 1exp
L
j eqL P

j L L
j g j

N V
A R T r

β σα
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

, 1, 2 1exp
R
j eqR P

j R R
j g j

N V
A R T r

β σα
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.96) 

The particle number densities for the border sizes L
jn  and R

jn  are estimated from a 

geometric progression approximation 
1, 1

1

( )

1
1

j j j

j j

ceil m m
C m m
jL C

j j C
j

n
n n

n

− −

−

−

−

−
−

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
, 

, 1

1

( )

1

j j j

j j

floor m m
C m m
jR C

j j C
j

n
n n

n

+

+

−

−
+⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.97) 

In order to propagate particle growth, if 0C
jn ≠  and 1 0C

jn + = , R
jn  is calculated by 

, 1 1,

1,

( ) ( )
( )

j j j j

j j j

floor m ceil m
C m ceil m
jR L

j j L
j

n
n n

n

+ −

−

−

−⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.98) 

The particle number density at the center of each size group j is calculated by assuming 

two geometric progressions inside each size group 

1, , 1( ) ( )

1 1
(1/ ) 1 ( )j j j j j j

jC
j km ceil m floor m mL R k

j jk k

N
n

q q− +− −

= =

=
+ +∑ ∑

 (3.99) 

with 
1

1

1

j jm m
jL

j
j

n
q
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−−

−

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

, 
1

1

1
j jm m
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j

j

n
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n

+ −
+⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.100) 

The average number density of size group j is calculated as  

, 1 1,( ) ( ) 1
j

j
j j j j

N
n

floor m ceil m+ −

=
− +

 (3.101) 

Since the boundary (ceil, floor) and mean values of size groups are used directly and RV is 

not explicitly found in these equations, this model is very flexible to apply.  This allows arbitrary 

size increments between groups in a single simulation, making it easy to improve accuracy with 

smaller RV in size ranges of interest and to improve computation with larger RV in other sizes.  

Alternatively, the group sizes can be chosen to produce linearly-spaced particle radius intervals, 

needed to compare with experiments. 

 
3.3 Validation with Exact Solution for Collision and Diffusion 

3.3.1 Collision Test Problem 
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Saffman [191] suggested the turbulent collision frequency per unit volume of liquid 

medium to be: 
1/ 2 31.3 ( / ) ( )ij i jA r rε υΦ = +  (3.102) 

where ε  is turbulent energy dissipation rate and υ  is kinematic viscosity. The empirical 

coefficient A was suggested by Higashitani [215] and is assumed constant here.  This model has 

been often applied to study inclusion agglomeration in liquid steel [195-196, 204-208, 210].  It is 

chosen here as a test problem to validate the collision model, using the complete integer-range 

equations in Section 3.1.3 as the exact solution.  

Substituting into the dimensionless form of number density and time: 
*

0/i in n n= , * 1/ 2 3
1 01.3 ( / )t A r n tε υ=  (3.103) 

where n0 and r1 are the initial number density and the radius of single pseudomolecules.  The 

initial condition is given by ni
*=1 for i=1 and ni

*=0 for i>1.  The size of the largest agglomerated 

particle is iM=12000, so that accuracy within 0.05% error in the total particle volume is 

guaranteed up to t*=1.  The boundary condition is always zero number density of the largest 

agglomerated particle (exact solution) and for the largest size group (PSG method).  The Runge-

Kutta-Gill method is applied for time integration with a time step of ∆t*=0.0025.  Smaller time 

step sizes produce negligible difference. 

The total dimensionless number density of pseudomolecules and particles are defined as 

* *

1

Mi

M i
i

N i n
=

= ⋅∑ , * *

1

Mi

T i
i

N n
=

= ∑  for exact solution  

* *

1

MG

M j j
j

N m N
=

= ⋅∑ , * *

1

MG

T j
j

N N
=

=∑  for PSG method (3.104) 

The mass balance requires NM
* to be constant (=1) through the entire calculation.  Figure 3.7 

shows the total particle volume is conserved for both the exact solution and PSG method.  There 

is also good agreement between both cases for RV=3 and RV=2 for the total particle number 

density, which decreases with time due to agglomeration.  Figure 3.8 shows that the evolution of 

the number densities of each size group with time from the PSG method also agrees reasonably 

with the exact solution for both RV cases.  With smaller RV, accuracy of the PSG method 

increases as expected.  
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As time increases, collisions form large particles, leaving fewer smaller particles.  For 

example, size group N10 in RV=2 contains all particle sizes from 363 to 724 pseudomolecules, 

with a central size of 512 pseudomolecules.  The number density of intermediate size groups 

increases at early times, reaches a maximum, and decreases at later times.  The exact solution has 

limited maximum time, owing to its prohibitive computational cost.  The tremendous 

computational efficiency of the PSG method is seen by examination of Table 3.3.   

 

3.3.2 Diffusion Test Problem 

To validate the PSG diffusion model, a test problem is chosen where the total number 

density of single pseudomolecules in the system is produced by an isothermal first order reaction 

[190] 

* * * * *
1,

1
( ) ( ) / 9[1 exp( 0.1 )]

Mi

s s eq i
i

n t n t n i n t
=

= = ⋅ = − −∑  (3.105) 

The number density of dissolved single pseudomolecules must be adjusted with time, to 

match the increase of ns
*.  This increase with time can be interpreted as an increase in 

supersaturation due to decreasing temperature in a practical cooling process.  The dimensionless 

terms are defined as 
*

1,/i i eqn n n= , *
1 1 1,4 eqt D r n tπ=  (3.106) 

To calculate the dissociation rate in Eq.(3.76), 2σVP/(RgTr1)=3.488 [190].  The initial 

condition is no particles, or ni
*=0 for i≥1.   

The boundary condition is always zero number density for the largest agglomerated 

particle (exact solution) or for the largest size group (PSG method).  The maximum size of 

agglomerated particle is chosen as iM=50000, to ensure that mass conservation is satisfied up to 

t*=10000.  The explicit Runge-Kutta-Gill method was used for integration with time step size of 

∆t*=0.01 chosen for accuracy.  The maximum time step for stability is roughly ∆t*=0.04 for both 

methods for this problem. 

As shown in Figure 3.9, the total volume of particles is conserved for both the exact 

solution and the PSG method.  This total increases with time and asymptotes at 9, according to 

Eq. (3.105).  The number density histories from all 3 cases also agree. Its behavior can be 

explained by examining Figure 3.10.  
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 Figure 3.10 shows how the particle size distribution evolves, due to the changing 

concentration gradients near particles of different size groups.  At early times, all size group 

particles grow owing to the driving force of increasing supersaturation.  At later times, the results 

show Ostwald ripening.  The large particles have low concentrations, so tend to grow at the 

expense of smaller particles, which have high local concentrations, and eventually shrink.  For 

example, size group N1 (dissolved single pseudomolecules) reaches its peak and starts to 

decrease in number after t*=20.  There is reasonable agreement for both total particle number 

density and number densities of each size group between the PSG method and the exact solution 

for both cases of RV=3 and RV=2.  Results for RV=2 naturally match the exact solution more 

closely. 

The comparison of dimensionless average particle radius, 1/r r  with time between PSG 

method and exact solution is shown in Figure 3.11. By choosing the different truncating size, 

both RV=3 and RV=2 give good matches with exact solution. The slope of average radius with 

time shows a clear transition from ~0.5 at growth stage to ~1/3 at coarsening stage, which is 

expected in the classical precipitation theories. It is no surprise that the slopes at growth stage 

can be larger than 0.5 in this test problem, because it is accompanied by the continuous 

nucleation for a quick precipitation reaction. 

According to Eqs. (3.97)-(3.101), the calculated “border number densities” of size groups 

at in PSG method can be used to generate the size distribution of each individual particle. The 

comparison of number densities with exact solution for different times is shown in Figure 3.12. It 

demonstrates that PSG method generally gives reasonable match of particle size distribution with 

exact solution, but a deeper trough and a larger number density are observed at the first 

minimum point and the maximum size separately. It suggests a better estimation of border 

number densities in PSG method is maybe possible in future. 

 

3.3.3 Comparison of Computational Cost between PSG Method with Exact Solution 

The computation times for both test problems are listed in Table 3.3. All the calculations 

are run with Matlab on Dell OPTIPLEX GX270 with P4 3.20GHz CPU and 2GB RAM in order 

to enable a fair comparison.  The computational cost dramatically reduces for the PSG method.  

It is interesting to note that the computation cost for the collision problem is proportional to iM
2 

for the exact solution or GM
2 for the PSG method, while it is proportional to iM or GM 
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respectively for the diffusion problem.  Because the details of particle distribution inside the size 

groups must be captured to enable an accurate solution in a diffusion problem, the time saving is 

not as large.  The savings increase exponentially with increasing maximum particle size.  This is 

enough to make practical precipitation calculations possible, considering that less than 60 size 

groups covers particle sizes up to 100µm with constant RV=2 for typical nitrides or carbides in 

microalloyed steels as shown in Table 3.1. 

 
3.4 Practical Applications 

When the PSG method is applied to model a real precipitation process, additional models 

are needed for the temperature history and for the mass concentrations of each element dissolved 

at equilibrium. This chapter assumes the temperature history is known in advance and the 

equilibrium precipitation model in chapter 2 is used for equilibrium calculation.  

For a given steel composition and temperature history, the first step is to use the 

equilibrium model to compute the dissolved concentrations of every element at every 

temperature, and to identify the critical element which restricts the number of single 

pseudomolecules available to form the precipitate of interest, as a function of time.  The initial 

condition starting from the liquid state is complete dissolution with the number density of single 

pseudomolecules, N1(t=0), equal to the total number density, ns, of the precipitate of interest.  

For a given steel composition containing M0 of element M, and X0 of element X, then ns for 

precipitate MxXy is  

0 0min ,
100 100

steel steel
s A A

M X

M Xn N N
xA yA
ρ ρ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (3.107) 

where AM and AX are the atomic masses of elements M and X, and ρsteel is the density of the steel 

matrix (7500kg·m-3).  All other particle sizes have zero number densities initially.   

Sometimes, such as after a solution treatment, some of the initial processing steps from the 

liquid state can be ignored or replaced with a measured initial distribution.  Because the model in 

this chapter can handle only one precipitate, the initial composition must be the dissolved 

concentration available for that precipitate after taking away the other precipitates that form first.  

For example, in the cases of nitride AlN formation, a new Al concentration is used after 

subtracting the more stable oxide Al2O3. 
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The equilibrium number density of single pseudomolecules of the precipitate in the steel, 

n1,eq, is calculated from the dissolved mass concentrations [M]eq and [X]eq at equilibrium in the 

same way: 

1,

[ ] [ ]
min ,

100 100
eq eqsteel steel

eq A A
M X

M X
n N N

xA yA
ρ ρ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (3.108) 

Although the current model only calculates size distributions for a single precipitate, other 

alloys may affect the results by forming other precipitates which change the equilibrium 

dissolved concentrations of the elements in the precipitate of interest.  These effects are included 

through the equilibrium model, in addition to Wagner interactions [87].   

The PSG kinetic model is then run, knowing the history of the equilibrium number 

density of single pseudomolecules of the chosen precipitate.  The diffusion coefficients and 

dissociation rates in Eqs. (3.75)-(3.77) and (3.93)-(3.95) are updated for each time step according 

to the temperature history. This model calculates how the particle size distribution evolves with 

time.  

When running the PSG model, time steps must be large enough to enable reasonable 

computation cost, while avoiding stability problems due to dissociation exceeding diffusion 

growth.  Thus, the implicit Euler scheme is adopted here to integrate Eqs. (3.91)-(3.101) through 

time: 

, 1 1,1 11
1

( ) ( )
1 ( )j j j jR i L L i

j j j j j j
j j j
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m m m
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⎡ ⎤
+∆ + +⎢ ⎥

⎢ ⎥⎣ ⎦
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1 1 1 1 1 1 1
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− − + + +

⎡
= +∆ − + + +⎢
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, 1 1,1 1 1
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( ) ( ) ( 2)j j j jR i i R L L i L

j j j j j j j
j j

floor m ceil m
N N n A N n j

m m
β α+ −+ + +

⎤
+ − + − ≥⎥

⎥⎦
 (3.109) 

where i is the time-step index.  This implicit scheme allows over 104–fold increase in time step 

size comparing with the original explicit scheme, for realistic precipitate/matrix interfacial 

energies ~0.5J/m2.  The above equation system is solved with the iterative Gauss-Seidel method 

until the largest relative change of 1i
jN +  converges to within less than 10-5 between two iterations.  

The upper limits of L
jn  and R

jn  are 1i
jN + , and are evaluated at each iteration.  Although this 

scheme is stable for any time step size, its accuracy may deteriorate if the time step is too large.  



86 
 

Thus a reasonable time step must be chosen where results stay almost the same with a smaller 

time step. 

Having validated mass conservation with test problems, the number density of single 

pseudomolecules is then computed as follows, instead of Eq. (3.92)  

1 1
1

2

MG
i i

s j j
j

N n m N+ +

=

= −∑  (3.110) 

Because single pseudomolecules is the only size group to react with all particles, this 

choice saves around half of computational cost. To post-process the results, the total number 

density of precipitate particles Np, fraction precipitated fP, mean precipitate particle radius Pr  and 

precipitate volume fraction φP are computed from the number densities as follows: 
M

T

G

P j
j G

N N
=

= ∑   (3.111) 
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1,

( )
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P P

s eq P

wnf
n n

ρϕ
ρ

=
−

 (3.114) 

where size group GT, which contains particles just larger than a “truncating” threshold radius rT-

1,T, is introduced to define the split between “dissolved” and measurable particles.  This 

parameter must be introduced because all experimental techniques have resolution limits, while 

the current PSG model simulates particles of all sizes including single pseudomolecules.  ρP is 

the density of the precipitate phase, and e
Pw  is the mass concentration of precipitate at 

equilibrium (wt%). All of these values with subscript “P” here are clearly dependent on the 

choice of truncating size, which is not required for numerical simulation but can be given by the 

resolutions of different experimental techniques. The complete PSG model is applied here to 

three different example precipitate systems, where measurements are available for validation. 

 

3.4.1 Precipitated Fraction for Isothermal AlN Precipitation 
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The first validation problem for the PSG diffusion model was to simulate the isothermal 

precipitation of AlN in a 0.09%C, 0.20%Si, 0.36%Mn, 0.051%Al and 0.0073%N steel for the 

experimental conditions measured by Vodopivec [138].  Specimens were solution treated at 

1300oC for 2 hours, “directly” cooled to the precipitation temperature of 840oC in austenite or 

700oC in ferrite, aged for various times, and quenched.  The AlN content in steel was measured 

using the Beeghly method [12].   

The initial experimental measurements (zero and short aging times) report 6.4% of the total 

N (N0=0.0073%) precipitated as AlN, perhaps because the cooling stages were not fast enough.  

The final precipitated amounts of nitrogen as AlN do not reach the predictions of the equilibrium 

model, even after long holding times, when the precipitated fraction becomes nearly constant.  

This might be due to nitrogen consumed into other types of nitrides.  Thus the measurements are 

normalized to zero at zero aging time, and (N0-[N]eq)/N0 at long times. 

As shown in Figure 3.13, the equilibrium model [87] predicts AlN to start forming at 

1236oC, and the equilibrium dissolved concentration of nitrogen in steel is ~0.00022wt% at 

840oC and ~0.0000031wt% at 700oC.  A sharp decrease of equilibrium dissolved aluminum 

concentration can be seen over the γ→α phase transformation, 865oC to 715oC, due to the lower 

solubility limit of AlN in ferrite predicted by the equilibrium model.   

Isothermal precipitation simulations of 1 hour at 700oC and 3 hours at 840oC were run, 

neglecting the cooling histories before and after, which were not clearly reported.  The molar 

volume of AlN is 12.54×10-6m3/mol [36], and the diffusion coefficient of Al in austenite and 

ferrite is taken from Table 3.2. The interfacial energies for these two precipitation temperatures 

are calculated in the appendix A, where the value is seen to be 10% higher at 700oC in ferrite 

than at 840oC in austenite. The number densities of precipitate particles are calculated based on 

the nitrogen concentration, because this element is insufficient when reacting with aluminum to 

form AlN for this steel composition.  Constant RV=2 and 32 size groups are used in the 

simulation, which covers particle radii up to around 200nm.  The time step is 0.001s with ~1000 

decreasing to ~100 iterations required within each time step for convergence of the implicit 

method with Gauss-Seidel solver.  Because it has been suggested that the Beeghly technique 

cannot detect very fine precipitate particles which could pass through the filter [216, 217], the 

truncating precipitate radius is set to 2.0nm in the simulation to match the measurements. 
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The predicted AlN precipitate fractions are shown and compared with experimental 

measurements in Figure 3.14.  Reasonable matches are shown at both temperatures.  The 

calculation verifies the experimental observation of much faster precipitation in ferrite than in 

austenite, due to the lower solubility limit of AlN and the faster diffusion rate of aluminum in 

ferrite than in austenite. The disagreement could be due to AlN precipitation on the grain 

boundaries, because the physical properties assumed in the simulation are based on 

homogeneous precipitation in the steel matrix. The same mismatch in predicting AlN 

precipitation has been found and discussed by other researchers [218, 219].  

 

3.4.2 Size Distribution for Isothermal Niobium Precipitation 

The second validation problem is to simulate the size distribution of niobium precipitate 

particles in steel containing 0.079%Nb, 0.011%C, 0.001%N, 0.002%Mn, 0.0023%S, 0.001%P, 

0.006%Al and 0.0013%O, to compare the PSG simulation predictions with the niobium 

precipitate distribution measured in ferrite [220].  The alloy was vacuum induction melted, cast 

into ingots, and hot rolled from 50mm to 5mm thickness. After homogenization at 1350oC for 45 

min, the specimens were rapidly quenched to an aging temperature of 700oC and held for various 

times.  Small-angle neutron scattering (SANS) and transmission electron microscopy (TEM) 

were used to measure precipitate amount and size.   

The equilibrium calculation in Figure 3.13 predicts that the niobium precipitates in this 

steel first become stable at 1054oC, and the equilibrium dissolved mass concentration of the 

niobium is calculated as 0.0002506wt% at 700oC [87].  For the PSG precipitation simulation, the 

diffusion coefficient of Nb is taken from Table 3.2, molar volume of NbC is 13.39×10-6m3/mol 

[36], density of NbC is 7.84×103kg/m3 [36], and the interfacial energy is calculated in the 

appendix A.  The composition of the niobium precipitates in the simulation was regarded as 

NbN0.08C0.80, according to the predictions of the equilibrium model, for this steel composition, 

where pctC > pctN.  This composition agrees with the experimental observation of “niobium 

carbide” precipitates, and the non-stoichiometric ratio of NbC0.87 measured in other work [36].  

Lacking data for this complex niobium precipitate, property data were taken for NbC, which are 

believed to be very similar, as the lattice constants of NbC and NbC0.87 differ by only ~0.2% 

[221]. 
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In order to compare with the experimental measurements, RV was set equal 2 for particles 

with radius smaller than 0.3nm and larger than 10nm, and varied to give constant 0.2nm size 

groups for 0.3-8.5nm, and 0.5nm size groups for 8.5-10nm.  A total of 50 size groups were used 

to model particle radius up to 10nm to cover the largest particle observed in the experiments.  

The implicit time step was 0.01s, with less than 10 iterations needed for convergence at most 

times, resulting in ~2.5 days of total CPU time on a 3.20GHz processor PC for the 600,000s (~7 

days) simulation.  Rapid quenching from solution treatment to aging temperature and from aging 

to ambient is assumed, so only an isothermal simulation at 700oC was performed.   

Predicted evolutions of precipitate mean size, size distribution and volume fraction results 

from the PSG simulation are shown in Figures 3.15 and 3.16, and compared with available 

measurements [220].  Because many dislocations in the matrix due to the prior deformation may 

relax the lattice mismatch and decrease the interface energy, they become favored locations for 

precipitation. Figure 3.15 shows that lowering the interface energy to 0.3J/m2 (corresponding to a 

modified factor of 0.7) and choosing a truncating radius of 0.7nm gives the best match of both 

mean precipitate size and volume fraction with the SANS measurements. These results also 

indicate that decreasing interface energy makes the capillary effect smaller which makes large 

particles more difficult to grow, so a finer precipitate size and slower precipitation are predicted. 

All volume fraction curves eventually reach the equilibrium value of 0.084% for aging at 700oC.  

These calculation results of decreasing interface energy are qualitatively consistent with the 

experimental observations of deformation-induced nanosized Cu precipitation [222].  Increasing 

the truncating radius from 0.5nm to 0.7nm significantly delays the precipitation, although it has 

only minor influence on the calculated mean precipitate size, and only during the initial stage of 

precipitation.   

The simulation results with the adjusted interface energy 0.3J/m2 are compared with the 

normalized TEM measured particle size distribution / volume number frequency in ferrite at 300 

minutes in Figure 3.16.  The predicted mean radius of Nb precipitate particles of 1.93nm 

compares closely with the measured 1.82nm, and the particle size distributions also match 

reasonably. The simulated size distribution is missing the measured tail of large particles, 

however.  This is likely due to easier nucleation and higher diffusion at the grain boundaries, 

segregated regions, or other locations in the steel microstructure, where larger precipitates can 

form locally in the real samples.  In addition, the observed particles in TEM imaging have 
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irregular aspect ratio ~2.3 [220], which differs from the spherical assumption of the model, and 

suggests non-isotropic properties.   

The calculated evolution of the size distribution of the Nb particles is depicted in Figure 

3.17.  Each curve has the same characteristic shape, which evolves with time.  The number 

densities decrease with increasing particle size to a local minimum, increase to a peak, and 

finally decrease to zero. With increasing time, the number density of single (dissolved) 

pseudomolecules decreases from the large initial value, ns, that contains all of the particles, to the 

small equilibrium value n1,eq at equilibrium. Very small particles in the first few size groups are 

unstable, as the chance of gaining pseudomolecules is less than that of losing pseudomolecules, 

owing to the high surface curvature.  Thus, their number densities decrease with size, owing to 

the decreasing chance of a larger unstable embryo of pseudomolecules coming together due to 

the simulated process of random thermal diffusion.  With increasing size above the critical size, 

pseudomolecule attachment increasingly exceeds dissolution, so these stable particles grow 

increasingly faster and become larger.  Very large particles are rare simply due to insufficient 

growth time.  

The entire size distribution grows larger with time.  Except for the small unstable embryos 

which decrease in number, all other particle sizes increase in number during this period.  The 

maximum particle radius increases from 1.4nm at 20s to 2.0nm at 330s, while the most common 

size (peak number density) increases from 0.4nm to 0.8nm.   

After this initial growth stage, single pseudomolecules approach the equilibrium 

concentration. Smaller particles then decrease slowly in number due to dissolution, which 

provides single pseudomolecules for the slow growth of large particles. This is the particle 

coarsening or “Ostwald ripening” stage. This final precipitation stage is estimated to begin at 

~330s, based on the maximum total number of particles larger than 0.7nm, shown in Figure 3.17. 

This time matches with the decrease in slope of precipitated volume fraction with time that is 

both predicted and measured in Figure 3.15(b).  The precipitate size evolution after 100,000s 

roughly follows the law of 0.3
Pr t∝  in Figure 3.15(a), which agrees with the value of 1/3 from 

classical LSW coarsening theory [173, 174].  As larger particles grow, and smaller particles 

shrink during coarsening, the total number of particles decreases. This corresponds with the 

evolution of critical radius, included in Figure 3.14.  Starting smaller than the mean size, the 
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critical size increases with time to approach the mean, as supersaturation decreases towards 1 at 

equilibrium. 

The model results also quantify and provide a new insight into the classical stages of 

precipitate nucleation, growth, and coarsening.  For example, a critical radius, rc, can be obtained 

by setting βin1i=αiAi, which means that the rate of particle growth due to diffusion of single 

pseudomolecules to the surface exactly matches the rate of particle shrinking due to dissociation, 

and from Eqs. (3.76)-(3.77), leads to: 

1 1,

2
ln( / )

P
c

g eq

Vr
R T n n

σ
=  (3.115) 

At this critical size, the surface concentration of pseudomolecules, n1i, equals that at the 

far-field, n1.  Although this relation holds at any time, it is consistent with classical nucleation 

theory, which balances the decrease in volumetric free energy ∆GV in forming a spherical 

nucleous with the energy increase to form the new interface, σ, when ∆gV for a single precipitate 

system is defined as: 

lng
V

P

R T
g

V
∆ = Π  (3.116) 

where Π is the time-dependent supersaturation, which can be interpreted as n1/n1,eq in the current 

model. The same trends of critical radius in Figure 3.18 are observed with classical precipitation 

models. The current PSG method is more general, however, as the precipitation evolves naturally 

according to the time-varying local concentration gradients and cooling conditions. 

 

3.4.3 Precipitation-Temperature-Time (PTT) Diagram of Nb(C,N)  

The third validation problem is to simulate the precipitation of Nb(C,N) in austenite 

containing 0.067%C, 1.23%Mn, 0.20%Si, 0.008%S, 0.008%P, 0.040%Nb, 0.02%Al and 

0.006%N, to compare with the measured precipitation start and finish times in in Precipitation-

Temperature-Time (PTT) diagram [164].   

The isothermal precipitation behavior was determined using a computerized material 

testing system in vacuums. The cylindrical samples with 8mm long and 4mm in diameter, were 

reheated to the solution temperature of 1150oC, held for 30 minutes, and then cooled down to test 

temperature between 850oC and 950oC at intervals of 25oC. Each sample was held for 1 minute 

at the test temperature to stabilize, and 5% deformation was then executed using a constant strain 
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rate of 0.1s.  The stress decreases with time was monitored, while the strain level after 

deformation was kept constant. 

The stress vs time curves for this Nb-containing steel in the above stress relaxation tests 

are then recorded in Figure 3.19(a). Comparing with stress relaxation curves of reference plain 

carbon steel, the time dependence of the stress cannot be described by a logarithmically linear 

relationship anymore when precipitation occurs within sample, as shown in Figure 3.19(b) [25]. 

The precipitation causes a stress increment in addition to the basic logarithmic part, and the start 

and finish times are identified as the stress increment deviates from zero and reaches its 

maximum in stress relaxation curves [164]. These points are believed to correspond with the start 

point of the growth and coarsening stages of precipitation, separately. 

The equilibrium precipitation calculation result for this steel composition in austenite is 

shown in Figure 3.20. MnS precipitates first at 1564oC, then Nb(C,N) begins to precipitate at 

1141oC, and AlN occurs at 1021oC finally. Figure 3.20(b) shows the molar fraction of niobium 

nitride and carbide in mixed Nb(C,N) evolving with time. 

Isothermal precipitation simulations of 1000 second at each test temperature were run, 

neglecting the cooling histories before and after that. A constant RV=2 and 30 size groups were 

used to cover particle radius up to ~100nm in simulation. The diffusion coefficient of Nb in 

austenite is taken as Table 3.2, molar volume of Nb(C,N) is 13.06×10-6m3/mol, which is assumed 

to be the average of NbN and NbC0.87 [36], and independent of the composition and temperature, 

the effective interface energy is defined as ( , ) , ,( )Nb C N NbC eq NbC NbN eq NbNf fσ ξ σ σ= + , where ,NbC eqf  

and ,NbN eqf  are equilibrium molar fractions shown in Figure 3.20(b). NbCσ  and NbNσ  are 

calculated in Appendix A, and it shows that these interface energies slightly increase with lowing 

temperature.  

By choosing a modified factor ξ=0.475 for accounting the deformation introduced in tests 

and a truncating radius of 0.8nm, the calculated precipitated fraction evolutions with time are 

shown in Figure 3.21(a). These precipitated fraction curves are normalized with a ratio of 

Nb0/(Nb0-[Nb]eq), thus will tend to reach 1 finally. The slope transition points in these curves, 

labeled with circle symbols, are thought to stand for the precipitation start and finish times, 

which are determined as the slope transition points in stress-time curves in the stress relaxation 

tests, as shown in Figure 3.19(a).  
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The comparison of precipitation start and finish times between calculation and experiment 

is shown in Figure 3.21(b), and good matches for all five test temperatures are found by slope 

method. The curves of 1%, 5%, 10%, 50% and 90% precipitated fractions are also shown in the 

same figure. All curves show a classical “C” shape in PTT diagram. At high temperature just 

below the precipitation temperature 1130oC, the precipitation rate is slow because of a low 

supersaturation, although diffusion rate is high. At low temperature, the precipitation is also slow 

because of a low diffusion rate, although the supersaturation is high now. Thus a quickest 

precipitation rate is expected at a medium temperature range, around a nose temperature of 

900oC. 

 

3.5 Parameter Investigation 

In order to understand the influence of different physical parameters on precipitation, the 

numerical investigation is applied for the Nb(C,N) case at T=900oC in section 3.4.3. Niobium is 

always assumed to control the diffusion rate of precipitate and determine the particle number 

densities Nb(C,N) due to its shortage. The reference state has the niobium concentration of 0.04 

wt%, diffusion coefficient of 1.125×10-16m2/s, interface energy of 0.3J/m2 and equilibrium 

niobium concentration of 0.004327 wt%, which are the properties at 900oC. The molar volume 

of Nb(C,N) is determined as , ,NbC eq NbC NbN eq NbNf V f V+ =13.12×10-6m3/mol. Constant RV=2 and 30 

size groups are used to reach the largest precipitate radius as ~100nm. Truncating radius is set as 

0.5nm. The parameters of precipitation investigated include the diffusion coefficient, interface 

energy and equilibrium concentration. 

A larger diffusion coefficient obviously increases both the precipitation rate and the 

precipitate size, as shown in Figure 3.22. The increase of precipitation rate is roughly 

proportional to the increase of diffusion coefficient. But the increase of precipitate size does not 

correspond with the relationship of 1/ 2( )Mr D t∝  in growth or 1/3( )Mr D t∝  in coarsening in 

classical precipitation theory because a larger diffusion coefficient also increases the nucleation 

rate, which generates more stable nuclei and so causes less increase in precipitate size. The 

diffusion coefficient on grain boundaries is believed to be ~1000-10000 times than that in matrix 

[14, 198], which could explain the observed presence of coarser precipitates on grain boundaries 

in most measurements. 

The influence of interface energy on precipitation includes two sides. Smaller interface 



94 
 

energy decreases the nucleation barrier to form stable particles, so increases the precipitation rate 

at the beginning of precipitation. On the other hand, a decrease of interface energy causes a 

smaller capillary effect, and makes more fine precipitates and less coarse precipitates to form.  

The larger precipitates caused by the higher interface energy facilitate more complete 

precipitation at intermediate times (~1000s).  These effects of interface energies of 0.25J/m2, 

0.3J/m2 and 0.35J/m2 are compared and shown in Figure 3.23. 

The last important parameter which can influence precipitation behavior is the equilibrium 

concentration. As shown in Figure 3.24, for the same initial concentration, an increase of 

equilibrium dissolved concentration of niobium, causes supersaturation of pseudomolecules of 

niobium precipitate to decrease.  This will delay the precipitation rate due to a decrease of 

solutes in matrix that can precipitate out. At the same time, a lower supersaturation causes a 

smaller nucleation rate and less stable particles, thus a coarser size distribution of precipitate is 

expected. All of these findings from parameter investigation are identical with those numerical 

results predicted by the classical precipitation theory [223, 224].  

The results presented in this chapter are only approximate, because homogeneous 

nucleation (it may include nucleation in matrix, on dislocations or grain boundaries, but only one 

type of precipitates is involved and no solid surface to aid nucleation) of only one type of 

precipitate was simulated, instead of the many different types of precipitates that actually form in 

steel, and only the physical properties of the matrix phase were adopted.  These are not 

fundamental limitations of the method, however. Competition between the different precipitates 

for the alloy elements, such as different nitrides consuming nitrogen, causes inaccuracies that are 

addressed in Chapter 4 by generalizing the current model to handle multiple precipitates.  Such 

an enhanced multiphase precipitate model is needed to account for previously formed 

precipitates which act as heterogeneous nucleation sites for new precipitates of different 

composition.  Heterogeneous nucleation also needs consideration of grain-boundary and 

dislocation effects on the interfacial energy. 
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3.6 Tables and Figures 
 

Table 3.1: Relationship between size group and size range for RV=2 and RV=3 

RV=2 RV=3 

Size 

group  

Number of 

pseudomolecules 

Radius range  Size 

group 

Number of 

pseudomolecules 

Radius range  

1 1 0.17nm 1 1 0.17nm 

2 2 0.22nm 2 2-5 0.22-0.29nm 

3 3-5 0.25-0.29nm 3 6-15 0.31-0.42nm 

4 6-11 0.31-0.38nm 4 16-46 0.43-0.61nm 

5 12-22 0.39-0.48nm 5 47-140 0.62-0.89nm 

6 23-45 0.49-0.61nm 6 141-420 0.89-1.28nm 

7 46-90 0.61-0.77nm 7 421-1262 1.28-1.84nm 

8 91-181 0.77-0.97nm 8 1263-3787 1.84-2.66nm 

9 182-362 0.97-1.22nm 9 3788-11363 2.66-3.84nm 

10 363-724 1.22-1.53nm 10 11364-34091 3.84-5.53nm 

11 725-1448 1.53-1.93nm ··· ··· ··· 

12 1449-2896 1.93-2.43nm 15 2.76×106-8.28×106 23.9-34.5nm 

13 2897-5792 2.43-3.07nm 20 6.71×108-2.01×109 149-216nm 

14 5793-11585 3.07-3.86nm 25 1.63×1011-4.89×1011 0.93-1.34µm 

15 11586-23170 3.86-4.87nm 30 3.98×1013-1.19×1014 5.82-8.39µm 

··· ··· ··· 35 9.63×1015-2.89×1016 36.3-52.4µm 

20 3.71×105-7.41×105 12.3-15.4nm 40 2.34×1018-7.02×1018 227-327µm 

25 1.19×107-2.37×107 38.9-49.0nm    

30 3.80×108-7.59×108 124-156nm    

35 1.21×1010-2.43×1010 392-494nm    

40 3.89×1011-7.77×1011 1.25-1.57µm    

45 1.24×1013-2.49×1013 3.95-4.98µm    

50 3.98×1014-7.96×1014 12.6-15.8µm    

55 1.27×1016-2.55×1016 39.9-50.2µm    

60 4.08×1017-8.15×1017 127-159µm    

*The calculation of particle size is special based on AlN with VP=12.54×10-6m3/mol 
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Table 3.2: Diffusion Coefficients for elements in austenite and in ferrite [36, 197-202] 

Element In austenite (m2·s-1) In ferrite (m2·s-1) 

N 0.91×10-4exp(-168500/RT) 0.008×10-4exp(-79100/RT) 

C 0.0761×10-4exp(-134600/RT) 0.0127×10-4exp(-81400/RT) 

O 1.3×10-4exp(-166000/RT) 0.00291×10-4exp(-89500/RT) 

S 2.4×10-4exp(-223400/RT) 4.56×10-4exp(-214600/RT) 

Ti 0.15×10-4exp(-251200/RT) 3.15×10-4exp(-248000/RT) 

Nb 0.83×10-4exp(-266500/RT) 50.2×10-4exp(-252000/RT) 

V 0.25×10-4exp(-264200/RT) 0.61×10-4exp(-267100/RT) 

Al 2.51×10-4exp(-253400/RT)  30×10-4exp(-234500/RT) 

Mn 0.055×10-4exp(-249400/RT)  0.76×10-4exp(-224400/RT) 

 

 

 

 

Table 3.3: Comparison of computational cost for test problems 

 Collision (t*=1) Diffusion (t*=10000) 

Exact PSG(RV=2) PSG(RV=3) Exact PSG(RV=2) PSG(RV=3)

Storage iM=12000 GM=16 GM=11 iM=50000 GM=18 GM=13 

Computational 

time 

~225 

hours 

~0.8s ~0.4s ~27 hours ~560s ~390s 
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Figure 3.1: Schematic of particle number density  vs time over preciptiation. The four 

regions are: I. Induction; II. Nucleation; III. Growth; IV. Coarsening 
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Figure 3.2: Schematic disgram of free energy change for the nucleation of a spherical 

nucleus as a function of its radius 
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(a). Growth 

 

 

 

 

 

 

 

 

 

(b). Coarsening 

 

Figure 3.3: Schematic of the solute concentration of different particles during the growth 

and coarsening stage 

 

 

 

 

 

 

 

PC

,1IC

,2IC
MC

1r 2r particle size

concentration

PC

,1IC

,2IC

MC

1r 2r particle size

concentration



100 
 

 

 

 

 

 

 

 

 

 

 

 

(a). Growth 

 

 

 

 

 

 

 

 

 

 

(b). Coarsening 

 

Figure 3.4: Schematic of 2-D diffusion during the growth and coarsening stages 
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Figure 3.5: Diffusion coefficients of alloying elements in austenite and ferrite 
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Figure 3.6: Schematic of particle size distribution in PSG method 
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Figure 3.7: Comparison of collision curve calculated by PSG method with exact solution for 

different RV 
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(a). RV=3 

 

(b). RV=2 

 

Figure 3.8: Comparison of collision curve of each size group calculated by PSG method with 

exact solution for different RV 
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Figure 3.9: Comparison of diffusion curves calculated by PSG method with exact solution for 

different RV 
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(a). RV=3 

 

(b). RV=2 

 

Figure 3.10: Comparison of evolving numbers of each size group calculated by PSG diffusion 

method with exact solution for different RV 
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(a). RV=3 

 

(b). RV=2 

 

Figure 3.11: Comparison of average particle radius between PSG method and exact 

solution for different RV 
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(a). RV=3 

 

(b). RV=2 

Figure 3.12: Comparison of size distribution between PSG method and exact solution for 

different times and RV 
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Figure 3.13: Calculated equilibrium dissolved mass concentration of N for Vodopivec case [138] 

and Nb for Perrard case [220] showing aging test temperatures 
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Figure 3.14: Calculated and measured precipitated fraction of AlN in 0.051wt%Al-0.0073wt%N 

steel during isothermal aging at 840oC and 700oC (experimental data from Vodopivec [138]) 
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(a). Mean precipitate radius, Pr  

 

(b). Volume fraction precipitated, Pϕ  

 

Figure 3.15: Comparison of calculated and SANS measured niobium precipitation during 

isothermal aging at 973K (700oC) [220] 
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Figure 3.16: Normalized size distribution of niobium particles simulated compared with TEM 

measurements at 18,000s (300 minutes) [220] 
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Figure 3.17: Calculated size distributions of niobium precipitate particles 
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Figure 3.18: Calculated number density and critical radius of niobium precipitate particles 
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(a). For Nb-containing steel deformed 5% [164] 

 

 
(b). For Ti-containing and reference plain carbon steels [25] 

 

 

Figure 3.19: Stress relaxation curves in experiments 
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(a). Precipitate amount 

 
(b). Molar fraction of mixed Nb(C,N) precipitates  

 

Figure 3.20: Equilibrium calculation of Nb-containing steel in austenite (0.067%C, 

0.040%Nb and 0.006%N) 
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(a). Precipitated fraction and precipitation start and finish times determined by slope method  

 
(b). Comparison of precipitation start and finish times with stress relaxation experiment [164] 

 

Figure 3.21: Calculation and comparison of precipitation start and finish times of Nb-

containing steel (0.067%C, 0.040%Nb and 0.006%N)  
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(a). Precipitated fraction 
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(b). Mean precipitate radius 

 

Figure 3.22: Influence of diffusion coefficient on precipitation 
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(a). Precipitated fraction 
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(b). Mean precipitate radius 

 

Figure 3.23: Influence of interface energy on precipitation 
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(a). Precipitated fraction 
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(b). Mean precipitate radius 

 

Figure 3.24: Influence of supersaturation on precipitation 
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CHAPTER 4 

MULTIPHASE PRECIPITATION MODEL 

 

Because steel always contains dozens of alloying elements, the interactions almost 

always cause more than one type of precipitate to form. Some experimental micrographs of 

typical multiphase microalloy-based precipitates are shown in Figure 1.1. This figure shows that 

different kinds of precipitates can be mixed together to form larger coarse particles, instead of 

being separately distributed. 

During thermal processing of real metal systems, competition always exists between 

alloying elements to form different precipitates, such as different nitrides attracting nitrogen in 

microalloyed steels. During cooling, more stable precipitates form generated first at high 

temperature. The formation of these precipitates changes the remaining concentrations of 

dissolved elements in the matrix, and thereby changes the later formation of other precipitates. 

The previously forming precipitates can also provide heterogeneous nucleation and growth cores 

for new precipitates of different composition, leading to mixed precipitates with complex 

structures. This makes new precipitates easier and faster to form and causes the size of the 

ultimate mixed precipitate to be coarser.   Thus, consideration of multiphase precipitation leads 

to very different behavior than predicted by the modeling of homogeneous precipitation of a 

single precipitate phase in the matrix. All of these phenomena make a multiphase precipitation 

model important and necessary for realistic predictions of real systems.  

 

4.1 Previous Work 

The complex nature of the multiphase precipitation makes it very difficult to simulate. 

Recently, some promising attempts have been made to develop models of precipitation kinetics 

in multi-component and multi-phase systems.  

The easiest way to model multiphase precipitation is maybe to revise and expand the 

classical precipitation theories of single precipitate to multiphase precipitate. Sourmail [225] and 

Perez [226] et al used this approach to model simultaneous two-phase precipitation in steels. 

Similarly, TC-PRISMA (PRecIpitation Simulations in MAterials) is a new software package for 

modeling multiphase precipitation that uses modified Langer-Schwartz theory [178,179] and 

Kampmann-Wagner numerical approach [49] as described in chapter 3. By expanding the 
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classical nucleation and growth theories to multi-component and multi-phase system, TC-

PRISMA extends the functionality available through Thermo-Calc and DICTRA. Some 

description and applications of this software is given elsewhere [227, 228]. 

The “Multiphase-field” method is perhaps another possible way to model multiphase 

precipitation. Compared with conventional two-phase (e.g. matrix and precipitate phase) phase-

field methods, more mobilities and order parameters for different alloying elements and 

precipitate phases must be included. The general theory of multiphase field method is given by 

Steinback and Pezzolla [229], and an application of concurrent precipitation of two intermetallic 

compounds in the Cu-Sn System is performed by Park et al [230]. 

Matcalc is maybe the most effective tool which has been developed for modeling 

multiphase precipitation until now. By properly adjusting the classical nucleation theory and 

applying the thermodynamic extreme principle, Matcalc describes the evolution of precipitate 

structure and the interaction of precipitates of different phases, of different chemical composition 

and of different sizes via diffusion inside both matrix and precipitate phases. The theory, 

numerical solution and application of Matcalc [44-46], and a simulation of competing 

precipitation of AlN and VN in steel [231] are given by Kozeschnik et al. 

To the knowledge of the author, a molecule-based population-balance model for 

diffusion-controlled multiphase precipitation has never been attempted. In chapter 2, the 

equilibrium model has already considered the influence of a multi-composition system on the 

equilibrium concentrations of alloying elements, which is independent of kinetic model that will 

be used afterward. The purpose of this chapter is to expand the population balance and PSG 

equations of single-phase precipitation in chapter 3 to the multiphase precipitation. The new 

model must satisfy the mass balance of each precipitate phase, and be identical to the single-

phase precipitation model when the number of precipitate phases is reduced to one. The results 

of the newly-developed multiphase models are first validated to match two rigorous extreme test 

problems of completely mutually-exclusive and mutually-soluble precipitation. Then a new PSG 

method for multiphase precipitation is developed and validated with the exact solution of the 

population balance equations. 

 
4.2 Equations for Multiphase Population Balance 
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Following the population balance equations for single-phase precipitation in chapter 3, 

the growth or dissolution of all particles are also assumed to be only caused by the movement of 

pseudomolecules in the matrix in multiphase precipitation. The difference of multiphase 

precipitation kinetics is that the pseudomolecules of each precipitate phase can influence all 

aspects of particle nucleation, growth, and coarsening, and other precipitate phases, and must be 

carefully considered in theory.   

For multiphase precipitation, in addition to the number density, the average composition 

of each precipitate phase containing in the particles of certain size also must be characterized. 

Thus for a size i particle containing i pseudomolecules, ni is the number density, and z
ip  is the 

average molar fraction of precipitate phase z in size i particles, where the precipitate phase, z=1, 

2, …, np. Since the pseudomolecules composing the particle may come from the different 

precipitate phases, the particle size is determined by the total number of pseudomolecules it 

contains, the molar volume and the average molar fraction of the precipitate phases, as follows 

3
1

1 1

4
3

p pn n z
z z z P

i i i i
z z A

VV i p V i p r
N

π
= =

= = =∑ ∑  (4.1) 

Here z
PV  and 1

zV are the molar volume and the volume of the unit cell that contains one 

single pseudomolecule of precipitate phase z, np is the total number of precipitate phases in size i 

particles, and Vi is the volume of size i particles. The radius of size i particles, ri, is thus 

computed as 
1/33

4
i

i
Vr
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (4.2) 

Since the molar fractions of precipitate phases may vary with time for multiphase 

precipitation, the volume and radius of size i particles is also a function of time, instead of 

remaining constant as in single-phase model.  

Similar to single-phase precipitation, the generation of a size i particle may come from a 

size i-1 particle that gains one single pseudomolecule or from a size i+1 particle that loses one 

single pseudomolecule. On the other hand, the loss of a size i particle could be caused by gaining 

one single pseudomolecule during diffusion growth or by losing one single pseudomolecule 

during dissolution of the size i particle itself. But these single pseudomolecules could come from 

any precipitate type that is thermodynamically stable. For multiphase precipitation, the free 
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pseudomolecules of each precipitate phase have an influence on diffusion growth of size i 

particles. Simultaneously, the size i particles are likely to dissolve pseudomolecules of any 

precipitate phase to the matrix. Thus the corresponding population-balance equation for the 

number density change of precipitate phase z in size i particles for multiphase precipitation is 

suggested as  

1 ,
1 1 1 1

1 1 1

( 1)( ) P P Pzn n nz
s s z s s i s z s z zi i

i i i i i i i i i
s s s

i pd p n n p n n n A p n
dt i

δ
β β α− −

− −
= = =

− +
= − + −∑ ∑ ∑  

1 ,
1 1 1 p

1

( 1)
( 2) (z=1,2,...,n )

P zn
i s zs z

i i i
s

i p
A n i

i
δ

α +−
+ + +

=

+ −
+ ≥∑  (4.3) 

On the right side of the equation, the first term accounts for the loss of size i particles due 

to “diffusion growth”, which means that adding one single pseudomolecule of any type can make 

a size i particle of precipitate phase z (number density is z
i ip n ) grow into a size i+1 particle. The 

second term is for the increase of size i particles of phase z by adding one single pseudomolecule 

of any type into size i-1 particles. The third term represents the loss of size i particles, which can 

dissolve with dissociation rates of any precipitate phases s into the matrix under the influence of 

precipitate phase z, s z
iα
− ., and the last term is for the increase of the size i particles by dissolution 

of size i+1 particles. The corresponding coefficients are inserted into each term in order to 

conserve mass. 

The population equation for the single pseudomolecules of precipitate phase z is thus 

given analogously 

1
1 1 1 1 1 1 1 2 2 2 2

1 1 2 1 3

2
p p pM Mn n ni iz

z z s z s s z z s z z z z
i i i i i

s s i s i

dn n n n n n n a A p n An
dt

β β β α− −

= = = = =

= − − − + +∑ ∑ ∑ ∑ ∑  (4.4) 

The positive and negative terms account for the generation and loss of single 

pseudomolecules of phase z separately, which are correspondingly caused by dissolution and 

diffusion growth terms. Each term can be explained similarly by a certain reaction in Eq. (4.3).  

After the number densities of are calculated from Eqs. (4.3) and (4.4), one extra 

equation is needed to solve for all variables, ni and p(z=1,2,...,n )z
ip , which is given by the 

normalization condition of precipitate compositions for all particle sizes at all time: 

1

1
pn

z
i

z

p
=

=∑  (4.5) 
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Since the properties of each precipitate phase are different, the multiphase diffusion rates, 
z

iβ , and dissociation rates, s z
iα
− , are calculated as follows  

p4 (z=1,2,...,n )z z
i i MrDβ π=  (4.6) 

1,
p

4 2exp (z=1,2,...,n )
z z z s z

i M eqz s P
i

i i

rD n V
A RTr

π σα
−

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (4.7) 

where i is the size of particle, s and z are the precipitate phases. z
MD and 1,

z
eqn  are the 

diffusion rate and equilibrium number density of precipitate phase z, and z sσ −  is the interface 

energy between precipitate phase z and matrix under the influence of precipitate phase s. The 

above equations (4.3)-(4.7) comprise the multiphase precipitation solution and give the exact 

solution for comparison.  

Several important observations can be made from the above equations.  Firstly, the loss of 

pseudomolecules z from size i particles by the first diffusion-growth term in Eq. (4.3) and from 

the single pseudomolecules by the third diffusion-growth term in Eq. (4.4) must equal the gain of 

pseudomolecules z for size i+1 particles by the second term of diffusion growth in Eq. (4.3).  

This is automatically ensured by substituting into the two terms and noting that: 
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Similarly, the dissolution terms in Eqs. (4.3)-(4.4) satisfies the following relationship: 

,

1 1
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i i i i i i i i i i
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Thus the number of pseudomolecules of precipitate phase z containing in all size particles 

is must be conserved by satisfying the following equation: 

p
1

( ) 0 (z=1,2,...,n )
z
i i

i

d p ni
dt

∞

=

=∑  (4.10) 

When np=1, these population balance equations for multiphase precipitation are simplified 

to be exactly the same as Eqs. (3.74)-(3.75) for single-phase precipitation. 

The above model has been implemented into an explicit code in order to model two 

extreme special cases: 

1). completely mutually-exclusive precipitates 
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For completely mutually exclusive precipitates, the interface energies between different 

precipitate phases are much higher than those between matrix and each precipitate phase. The 

high repulsive force between different precipitate phases enables single pseudomolecules of each 

phase to quickly dissolve into the matrix because of the presence of other precipitates. This large 

inter-precipitate dissociation rate makes “mixed precipitates” (individual particles containing 

different precipitate phases) impossible. The single pseudomolecules of each precipitate phase 

are assumed to react only with particles of the same phase, and the different types of precipitates 

form and evolve separately in the matrix, which causes z s z
i iα α− =  p(z=1,2,...,n ) . All terms 

involving mutual reactions vanish, and Eqs. (4.3) and (4.4) simplify to the following by setting 

s=z: 

1 1 1 1 1 1 1 1 1 p
( ) ( 2) (z=1,2,...,n )

z
z z z z z z z z z zi i

i i i i i i i i i i i i i i
d p n n p n A p n n p n A p n i

dt
β α β α− − − + + + += − − + + ≥  
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These equations are similar to the single-phase model, except that the number density of 

each precipitate, p(z=1,2,...,n )z
i in p , is used instead of in .  

2). completely mutually-soluble precipitates 

For completely mutually-soluble precipitates, it is assumed that the dissociation rate of 

each precipitate phase is not influenced by other precipitate phases. Inserting z s z
i iα α− =  

p(z=1,2,...,n )  into Eqs. (4.3) and (4.4), and summing Eq. (4.3) over all precipitate phases, the 

number density of size i particles evolves as follows 

1 1 1 1 1 1 1
1 1 1 1

( 2)
p p p pn n n n

s s s s s si
i i i i i i i i i i

s s s s
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= − − + + ≥∑ ∑ ∑ ∑  (4.13) 

This equation is similar to the single-phase precipitation model, Eq. (3.74), except that a 

summation over all precipitate phases is required. Moreover, if all precipitates are assumed to 

have identical properties (interface energy, diffusion coefficient, molar volume, supersaturation), 

Eqs. (4.13) gives the same results as those of the single-phase model if we treat all single 

pseudomolecules just as one type and set 
1

pn
s

i i
s

α α
=

=∑ . This relationship gives 1, 1,
1

pn
s

eq eq
s

n n
=

= ∑ , 
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which seems reasonable to keep the sum of dissolved concentration in the matrix of the different 

precipitate phases with identical properties constant.  

 

4.3 Test Problems with Mutually Exclusive and Soluble Precipitates 

1). completely mutually-exclusive precipitates 

Let us assume that two kinds of completely mutually-exclusive precipitates (e.g. AlN and 

NbN in steels) form separately in matrix, but have identical properties. Under this circumstance, 

the multiphase precipitation model should give exactly the same results as two separate runs of 

the single-phase model, where the total and equilibrium number density of each precipitate are 

simply input identically for both runs. 

The single pseudomolecules for the two precipitates in the system are assumed to be 

generated by an isothermal first order reaction with time: 

* *
1,

1

( ) 9 [1 exp( 0.1 )]
Mi

A A A
s i i eq

i

n t i p n n t
=

= ⋅ = − −∑  (4.14) 

* *
1,

1

( ) 9 [1 exp( 0.1 )]
Mi

B B B
s i i eq

i

n t i p n n t
=

= ⋅ = − −∑  (4.15) 

The dimensionless time in these expressions is defined as 
*

1 1,4 eqt Dr n tπ=  (4.16) 

where the equilibrium number densities are chosen as 1,
A
eqn =3.6×1023#/m3, 

1,
B

eqn =2.4×1023#/m3, 23 3
1, 1, 1, 6 10 #/mA B

eq eq eqn n n= + = × , and r1=0.294nm, D=10-9m2/s, σ=0.02J/m2, 

T=300K for both precipitate phases. Explicit forward Euler scheme with a time step size 

∆t*=0.01, and iM=6000 are used in all test problems in this chapter.  

The results from 2 runs of the single-phase precipitation model and 1 run of the 

multiphase precipitation model are shown and compared in Figure 4.1, which shows that the two 

methods match exactly for this test problem. In Figure 4.1(b), it is also observed that the number 

densities of single pseudomolecules are decreasing towards their dimensionless equilibrium 

values of 1, 1,/ 0.6A
eq eqn n =  and 1, 1,/ 0.4B

eq eqn n =  respectively. 

It is worth to mention that Eqs (4.3)-(4.4) do not work directly for the mutually-exclusive 

precipitates. The large interface energy between mutually-exclusive precipitates causes large 

dissociation rates for all particle sizes, which makes all mixed particles dissolve. This problem 
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cannot be solved by the assumption of one particle size distribution function in this work. Instead, 

Eqs. (4.11)-(4.12) should be used to model mutually-exclusive precipitates. 

 

2). completely mutually-soluble precipitates 

Completely mutually-soluble precipitates (such as Al26N and Al27N in steels, where the 

superscript is atomic weight) are considered for this test problem. The precipitates are assumed 

to have identical properties, and the kinetics should exactly match that of single-phase 

precipitation. The total and equilibrium number density used in the single-phase model 

simulation are simply the sum of the values for the two mutually-soluble precipitates. In order to 

validate the current multiphase model, the number densities of each precipitate are input. 

The pseudomolecules are assumed to be released via the same relationship used in the 

first test problem in Eq. (4.14) and (4.15). The parameters are chosen to be the same as those in 

the mutually-excusive case, as well as 23 3
1, 1, 1, 6 10 #/mA B

eq eq eqn n n= + = × , are used in a single run of 

the single-phase model for comparison. The results from the single-phase model are multiplied 

by the ratios 3/5 and 2/5 to get the values of each individual precipitate phase, and compared 

with results of multiphase model. Exact matches of size distributions are shown in Figure 4.2. 

The number densities of single pseudomolecules again are approaching their equilibrium values 

1,
A
eqn ( 1,0.6 eqn ) and 1,

B
eqn ( 1,0.4 eqn ) in Figure 4.2(b). 

The influence of mutually exclusive and soluble properties of precipitates on kinetics can 

be compared because all input values are the same in two test problems. As shown number 

densities evolutions in Figure 4.3, it is no surprise that the mutually soluble precipitates give 

larger size, because the previous precipitates can be supported as the nucleation and growth sites 

to attract pseudomolecules of both precipitate phases. On the other hand, the existing precipitates 

can only accept the pseudomolecules of the same type for the mutually-exclusive precipitates, 

which makes the particle size to increase slowly. 

By slightly changing the relative ratios of diffusion coefficients, interface energies of two 

mutually-soluble precipitates, some interesting observations are found. For a fixing time t*=100, 

the influence of changing ratio of diffusion coefficients, DB/DA, on the molar fraction of all size 

particles for precipitate phase A, is shown in Figure 4.4. An increase of diffusion coefficient, DA, 

will cause an increase of molar fraction of phase A in very large particles, and also will form 

more unstable very-small-size embryos of phase A.  Mass balance requires a decrease in the 
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intermediate size range.  The molar fraction of single pseudomolecules, stays at the equilibrium 

value of 1, 1, 1,/( ) 0.6a a b
eq eq eqn n n+ = . This behavior causes the molar fraction curves shape observed 

in Figure 4.4. 

Figure 4.5(a), as well as a zoom-in Figure 4.5 (b) on y-axis, shows the influence of 

changing the ratio of interface energies, σB/σA, on the molar fraction of all size particles for 

precipitate phase A. An increase of interface energy, σA, causes a larger capillary effect, which 

increases molar fraction of phase A for very large particles. Larger interface energy also causes 

an increase of the nucleation barrier, so unstable “embryos” with very small size will stay in 

solution, which cannot nucleate to become stable. In order to satisfy mass balance, a decrease of 

molar fraction of phase A must increase for the intermediate size range, which makes the curves 

in Figure 4.5 show their distinctive shape of parabolic increase followed by parabolic decrease. 

 

4.4 Multiphase PSG Method 

For the PSG method of multiphase precipitation, size group j is defined to include those 

particles with any number of pseudomolecules between mj-1,j and mj,j+1, with its center lying 

pseudomolecule number mj. The number density and average molar fraction of size group j is 

thus defined as 
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It is worth mentioning that the volume and radius of size group j particles are functions of 

precipitate phases, which can change with time. 

Following the population balance equations of multiphase precipitation, Eq. (4.3), and 

PSG equations for single-phase precipitation, the corresponding equations for PSG method are 

given as 
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where z
jP  stands for the molar fraction of precipitate phase z for the size group j particles. On 

the right hand of the equation, the first two terms account for the diffusion growth and 

dissolution of precipitate z inside size group j; the third and fourth terms are for the generation of 

precipitate s of size group j by the diffusion growth of size group j-1 and the dissociation of size 

group j+1; and the last two terms are for the loss of size group j particles by their own diffusion 

growth and dissolution; The corresponding coefficients are inserted into each term to conserve 

mass.  Note that this equation simplifies to Eq. (3.91) for single phase, np=1.   

According to Eqs. (4.4) and (4.19), the population balance for single pseudomolecules of 

precipitate z in the PSG method is given as 
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The total mass of each precipitate phase is proved to be conserved by satisfying the 

relationship  

p
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( )
=0 (z=1,2,...,n )

z
j j
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d P N
m
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∞

=
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The diffusion growth rate z
jβ , and dissociation rate z

jα  of size group j particles and 

precipitate phase z needed are calculated with Eqs. (4.6)-(4.7) using the characteristic (mean) 

radius given by the following equation: 
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z P
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The radius, diffusion growth rates, and dissociation rates for the border-sized particles and 

precipitate phase z are given as  
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These diffusion growth rates and dissociation rates are calculated for all involving 

precipitate phases z=1, 2, …, np. The particle number densities for the border sizes L
jn  and R

jn  

are still estimated by Eqs. (3.98)-(3.102), and the molar fractions for the border sizes 

particle, ( )z L
jP  and ( )z R

jP , are estimated from a geometric progression by assuming that molar 

fraction is exactly z
jP  at the center of size j group: 
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In order to propagate particle growth, if 0s
jP ≠  and 1 0s

jP + = , ( )s R
jP  is calculated by 
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These calculations of molar fractions are done for z=1, 2, …, np. It is worth to notice that 

these definitions are not necessary to guarantee the sum of molar fractions for the border-sized 

particles to be unit. Thus a normalization of molar fractions is suggested after calculation, as 

follows 
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 (4.28) 

The Eqs. (4.19)-(4.27), (3.98)-(3.102) comprise the PSG method for multiphase 

precipitation. Comparing with other software, such as Matcalc and PRISMA, the current model 

does not require a classical nucleation theory, which has some assumptions and uncertainties and 

itself. But the diffusion inside the precipitate phases is not considered in the current model. 

The total dimensionless number density of pseudomolecules of each precipitate phase, and 

that of particles are defined as 
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The mass balance requires *z
MN  to exactly match the generation function, as Eq. (4.14) or 

(4.15) throughout the entire calculation.   

 

4.5 Validation with Exact Solution 

To test the multiphase PSG model by comparison with the exact population-balance model 

equations, a test problem was made by increasing the diffusion coefficient of phase B via setting 

the ratio DB/DA=1.1 and keeping other parameters unchanged as in test problem of section 4.3.  

The results of the PSG method and exact solution for this problem of multiphase precipitation 

are shown in Figure 4.6 and 4.7. As shown in Figure 4.6, the total volume of each precipitate 

predicted with the PSG method (i.e. the dimensionless number density of pseudomolecules) 

matches the exact population-balance solution and furthermore conserves mass by matching the 

input function (after scaling with n1,eq to make dimensionless), which increases with time 

according to Eqs. (4.14)-(4.15). In addition, a good agreement for the total particle number 

density, *
TN , is also found, which decreases with time once precipitation starts.  

The histories of number density and molar fraction from both methods are compared in 

Figure 4.7. The particle size distribution evolves in a similar manner to that of single precipitates 

in Figure 3.10, and the number density of pseudomolecules of each precipitate phase evolves 

with time with similar values for both methods.  

Because the logarithmic distribution of molar fraction with each size group, defined in Eq. 

(4.26), was causing instability, the molar fractions were simply fixed to have the center value 

throughout the size group.  This solved the stability, but likely caused the accuracy problem with 

matching the molar fractions in Fig. 4.7(b).  The trends of smaller fractions at small-size and 

large-size and larger fractions for intermediate size of phase A are observed in both methods, but 

PSG method underestimates the values at peaks and bottoms, which is caused by a bad choice of 

“border molar fractions” here. A good agreement is expected to be available from implicit 

scheme to avoid stability, and better estimations of border molar fractions In future. 
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4.6 Solution Details 

In order to avoid stability problems due to dissociation exceeding diffusion growth, and to 

improve the time-efficiency of the calculation, the implicit Euler schemes are always adopted 

here to integrate these differentiate equations through time. Because mass conservation has been 

validated with test problems, the number density of single pseudomolecules of each precipitate 

phase is then computed with Eq. (4.28), instead of the more time-consuming Eq. (4.20) used 

previously: 

1
2

MG
z z z

s j j j
j

N n m P N
=

= −∑  (4.30) 

The ordinary differential equations (4.18) are discretized using implicit backward Euler 

scheme, which gives the similar results with Eq. (3.109) for each precipitate phase.   Starting 

from known values at time step i, Gauss-Seidel method is used to calculate the number densities 

of a certain precipitate phase at time step i+1 from the smallest size group to largest size group. 

The same calculation will be done after moving to the next precipitate phase, and continues until 

all phases are calculated. The positive number density and molar fractions are always predicted 

now. 

The suggested multiphase PSG model is most suitable for mutually-soluble precipitates. 

All precipitates can be divided into several groups of completely mutually-exclusive precipitates. 

The precipitation of different groups can be modeled as a mutually-exclusive extreme case by 

Eqs. (4.11)-(4.12). Inside each group, the precipitates are mutually soluble, which can be 

modeled by the suggested new multiphase PSG model. Thus the models described in this chapter 

can give a simplified approach to estimate the complete multiphase precipitation behaviors in 

alloys. 

Whether the precipitates are mutually exclusive and soluble can be determined by 

difference of the crystal structures and lattice parameters of precipitate phases as in chapter 2. 

The underlying physics of this criterion is to compare the interface energies between matrix and 

difference precipitates, and between precipitates of different phases. If the interface energies 

between precipitates are much larger, it will cause the different precipitate phases to occur 

separately and goes to mutually-exclusive extreme. On the other hand, the precipitates of 

different phases tend to nucleate and grow on each other, if the interface energies between 

precipitates are much smaller. This causes heterogeneous precipitation, which is the mutually-
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soluble extreme. In fact, a real precipitation happens between these two extremes, and each 

precipitate has a certain potential to attract or repel other precipitates. A true simulation of this 

requires arranging a size distribution of each precipitate phase, which can interact with 

precipitates of all phases.  
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4.7 Tables and Figures 

 
(a). Particle size distributions 

 

 
(b). Number densities of single pseudomolecules 

 

Figure 4.1: Comparison for the mutually-exclusive precipitates at different time by multiphase 

and single-phase precipitation models 
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(a). Particle size distributions 

 

 
(b). Number densities of single pseudomolecules 

 

Figure 4.2: Comparison for the mutually-soluble precipitates at different time by 

multiphase and single-phase precipitation models 
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Figure 4.3: Comparison of total particle size distributions for the mutually-exclusive and 

mutually-soluble precipitates at different time 
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Figure 4.4: Influence of changing ratios of diffusion coefficients on molar fractions of 

phase A for mutually-soluble precipitates at t*=100 
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(a). Global picture   

 

 

 

 

 

 

 

 

 

 

 

 

 

(b). Zoom-in picture 

 

Figure 4.5: Influence of changing ratios of interface energies on molar fractions of phase 

A for mutually-soluble precipitates at t*=100 
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Figure 4.6: Comparison of multiphase diffusion curves calculated by PSG method with 

exact solution for RV=2 
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(a). Total number densities 
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(b). Molar fraction of precipitate phase A 

 

Figure 4.7: Comparison of multiphase diffusion curves of each size group calculated by PSG 

method with exact solution for RV=2 
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CHAPTER 5 

GRAIN GROWTH MODEL IN THE PRESENCE OF PRECIPITATES 

 

Grain size is a very important factor to determine the microstructure and mechanical 

properties of materials, such as strength, ductility and toughness. Since the grain boundaries are 

open and disordered crystal regions of high energy, the thermodynamic driving force of grain 

growth is to decrease the total area of grain boundaries.  If the grain size increases, accompanied 

by a reduction in the actual number of grains, the total area of boundary will be reduced. Thus, 

an inherent distribution of grain size within a given structure arises from achieving a minimum 

total free energy of the system and meeting the above requirements. It is the size differences 

between neighboring grains which provide a driving force for grain growth. Those grains with a 

size advantage over their neighbors would experience significant growth. Larger grains would 

grow at the expense of smaller grains, leading to an overall increase in grain size.  

The precipitates are able to constrain grain boundary movement, and thus inhibit grain 

growth and refine grain size. This could result in an improvement of the ductility, which can 

reduce the occurrence frequency of transverse cracks. Both facts make a grain refinement and a 

kinetic model of grain growth important. 

 

5.1 Previous Work 

The grain growth is generally divided as two types: so-called “normal” and “abnormal” 

growth. The normal grain growth is referred to a self-similar coarsening process that the grain 

size distribution remains essentially quasi-stationary while the average grain size increases [232]. 

Alternatively, abnormal grain growth is a process in which a non-uniform grain size distribution 

develops by a selected number of grains growing more rapidly at the expense of others to 

achieve recrystallization. In order for this to occur, the subset of grains must possess some 

advantage over their competitors such as anisotropy of grain boundary energy or mobility, 

favorable texture, or non-uniform spatial distribution of precipitates. The details of abnormal 

grain growth are beyond this work, and are encouraged to be found elsewhere [233]. 

A necessary condition for the occurrence of abnormal grain growth is that normal grain 

growth is inhibited. There are several ways to retard the grain growth, but the only well-known 

method of completely inhibiting grain growth in bulk materials is by the introduction of second 
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phase particles [6]. If a single boundary intersects a spherical particle, a small area of grain 

boundary disappears, thus the total boundary area arising from the location of particle is less than 

that which arises if the particle is situated elsewhere in the matrix phase. Consequently, grain 

boundary migration will occur only if the driving force for grain growth exceeds the pinning 

force exerted by particles on the boundary. Otherwise, the grain growth will be inhibited 

completely.  

In continuous casting process, the austenite grain growth is the dominant microstructural 

phenomena in casting, reheating and between rolling strands after completion of recrystallization. 

The austenite microstructure also determines the final ferrite grain size. Thus it plays a key role 

to determine the final mechanical properties of the steel product, and attempted to b modeled.  

 

5.1.1 Normal Grain Growth 

The driving force of grain growth is the reduction of grain boundaries area, and the 

driving pressures is given by the combination of surface tension and the curvature of the grain 

boundary, as follows [234] 

/G cP σ ρ=  (5.1) 

where grain boundary curvature radius / 2c R Dρ = =  for a spherical grain, substituting this into 

equation fields 

/ 2 /GP R Dσ σ= =  (5.2) 

The numerical constant in this equation can vary by several times, depending on the 

assumptions of the models. A better description is given by a heterogeneity factor, which is the 

ratio of the radii of growing grains to matrix grains suggested by Gladman [36], as follows  

1 /GP K Dσ=  (5.3) 

The grain boundary migration rate is related to the effective driving force through the 

following equation 

( )(1/ 1)1
2

n
G

dR dDV M P
dt dt

−= = = ∆  (5.4) 

where M is grain boundary mobility, which is often expressed by an Arrhenius function  

0 exp( / )appM M Q RT= − . Qapp is the temperature-independent activation energy for grain 

boundary migration, and n is the time exponent in grain growth equation, which approaches a 
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constant value of 0.5 for the ideal case of ultrapure metals annealed at high temperature [235]. 

However, experimentally determined values of n vary considerably and are frequently less than 

the theoretical value, which may be influenced by the presence of solute atoms, solute 

segregation, second phase particles and texture effects and widely accepted as reasons of grain 

growth inhibition [236, 237].  

 

5.1.2 Grain Size Inhibition by the Precipitates 

The addition of second phase precipitates is believed to be an efficient tool to control or 

refine the grain size. The well-known work by Zener, gives the first analysis of forces balance 

between particles and grain boundaries [6]. For a single boundary intersecting a spherical particle, 

a small area of grain boundary disappears and the local curvature of the boundary is altered as 

shown in Figure 5.1. Unpinning requires an additional energy by the driving force for grain 

boundary movement. 

The pinning force exerted by as single second phase particle on the grain boundary is 

written as the product of the component of interface tension of grain boundary in the direction of 

its movement, σsinθ, and the linear length of contact area, 2πrcosθ, as follows 

2 sin cosZF rπ σ θ θ=  (5.5) 

For maximum pull, θ=45o gives max
ZF rπ σ=  

The surface density of particles on the grain boundary can be written as their volume 

density multiplying the precipitate radius r: 

3 2

3
4 / 3 4

V V
s VN N r r

r r
ϕ ϕ
π π

= ⋅ = ⋅ =  (5.6) 

The maximum pinning pressure due to all particles on the unit grain boundary is thus 

given as 

max 3
4

V
Z s zP N F

r
ϕ σ

= ⋅ =  (5.7) 

On the other hand, the driving pressure for grain growth is still given by Eq. (5.2). When 

the system is at equilibrium, g ZP P= , the grain radius is the Zener limit, which is the critical 

grain radius under the balance of driving and pinning pressures, as follows 

4
3c

V

rR
ϕ

=  (5.8) 
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This work demonstrated for the first time, both qualitatively and quantitatively that, for a 

given particle-containing material, an increase in the volume fraction, or a decrease in particle 

size will cause a decrease of pinning grain size. It suggests an important method to achieve a fine 

size for particle-containing materials. However, the coarsening or dissolution of the precipitates 

may adversely initiate abnormal grain growth of some unpinning grains.  

The precipitate particles are always distributed with a size range, and it will have the 

different pinning effect with the uniform distribution of its own mean size, or other size 

distributions with the same mean size on restricting the grain growth. Fullman [238] suggested to 

rewritten the Eq. (5.8) of critical grain radius as 

4 ( )/
3

V i
c

i i

rR
r

ϕ
= ∑  (5.9) 

After Zener equation was developed, many researchers tried to introduce less 

assumptions in derivation and improve accuracy and applicability to more realistic situations. 

Hillert pointed out that for Zener limit of grain growth inhibition, the lower limit is 0.44r/f and 

the upper limit is 0.67r/φV [232]. Clearly, the initial Zener limit is beyond this range by a factor 

of 2-3. But if following Gladman’s suggestion [239], the way to judge whether the particles is in 

contact with a grain boundary is when the center of the particle within ±r of the boundary, and 

the contacting distance should be 2r, instead of r in Zener’s initial work. This idea gives the 

Zener limit exactly as the upper limit suggested by Hillert.  

According to many modifications, a more general form of critical grain radius could be 

expressed as [240] 

1

22c m
V

K rR
K ϕ

=  (5.10) 

It shows that the critical grain radius increases as mean precipitates size increases and the 

particle volume fraction decreases, but the numerical constants may vary. The exponent m can 

vary from 0.33 to 1, which is directly related to apparent volume fraction of particles located 

near the grain boundaries, rather than the true volume fraction through the materials [241]. For 

an isothermal process, the limiting grain size continues to decrease first after precipitates begin 

to form, until the grain growth is completely inhibited. After the equilibrium state is approached, 

the volume fraction of precipitates is kept as constant and the particle size increases with time by 
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coarsening. This may cause the limiting size to increase again. More details of Zener equation 

development are encouraged to be found in the work of Manohar et al [240].  
 

5. 1. 3 Grain Growth in the Presence of Precipitates 

By coupling the Zener pinning force, a general equation to describe the grain growth in 

the presence of precipitates is thus suggested as [242] 

( )(1/ 1)1
2

n
G Z

dR dDV M P P
dt dt

−= = = −  (5.11) 

According to Eq. (5.10), the general form of the pinning force, PZ, is given as 

2

m
V

ZP K
r
ϕσ=  (5.12) 

Inserting the general forms of driving force PG and pinning force PZ, Eq. (5.3) and (5.12), 

the above equation is rewritten as 
(1/ 1)

(1/ 1) 2
0 1

1

12 exp ( )
nm

n VdD Q KM K
dt RT D K r

ϕσ
−

− ⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5.13) 

Setting A=2M0(K1σ)(1/n-1) and B=K1/K2, the equation is simplifies as follows 
(1/ 1)

1 1exp
nm

VdD QA
dt RT D B r

ϕ
−

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (5.14) 

The parameter A and B are related to the grain boundary mobility and the pinning 

efficiency of the precipitates, respectively. The grain growth will stop when /dD dt =0, which 

given the limiting grain diameter as  

lim m
V

rD B
ϕ

=  (5.15) 

The parameter B is coefficient related to the pinning efficiency of the precipitates, which 

is equal to 8/3 in the original Zener’s model, but can vary by over one order of magnitude in 

other models [240]. Under precipitate pinning, the grain growth will be completely inhibited if 

grain size is already larger than this limiting size, which states that the pinning force of 

precipitates is larger than the driving force of grain growth. Otherwise, the precipitate pinning 

decreases the rate of grain growth, which is calculated by Eq. (5.14). 

If a grain size distribution is modeled, instead of the mean size in the above model, the 

driving force for grain growth is believed to be the curvature difference of neighboring grains. 
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Eq. (5.11) will be applied to compute the growth rate of each individual grain under the influence 

of all of its neighboring grains. Only grains with size advantage over their neighbors can grow, 

and others will shrink. The grain boundary energies are always required to be different for some 

grains to induce an initial uniform grain size to develop. These kinds of work are well developed 

by Abbruzzese et al [243, 244]. But these calculations are highly limited by the number of grains 

in simulation, and are not considered in this work. 

 
5.2 Implications of Model 

The austenite grain growth equation (5.14) in the presence of precipitates suggested by 

Anderson and Ø. Grong [242] is used in this thesis. The initial austenite diameter at the 

beginning of calculation is assumed to equal to the primary dendrite arm spacing (PDAS) at the 

highest temperature of a totally austenite structure. The PDAS is estimated as function of cooling 

rate and carbon content as [245] 

0

0

0.3162 2.03250.2063
0 0

1 0.0189 0.49170.2063
0 0

278.748( ) ( ) 0 0.15
278.748( ) ( ) 0.15 1.0

C
R

C
R

C C C
C C C

λ
− +−

− −−

⎧ ≤ ≤
= ⎨

≤ ≤⎩
 (5.16) 

where CR is cooling rate during solidification, which is predicted by the difference and 

cooling time between solidus and liquidus temperatures. C0 is carbon content with the unit of 

wt%.  

For austenite grain growth, apparent activation energy is always assumed to equal to the 

activation energy for diffusion of iron in austenite, but it may depend on the chemical 

composition of microalloy and segregation. Bernhard et al suggested the values of parameters for 

austenite grain growth model, which give a good match with experimental for a wide range of 

steel composition. The kinetic constant A is assumed to be 4×10-3 m2s-1 and time exponent n is 

taken as 0.5. The equivalent carbon content CP and apparent activation energy Qapp for grain 

growth above 0.1wt% of equivalent carbon content are given as [53, 246] 

% % 0.14 % 0.04 %Pwt C wt C wt Si wt Mn= − +  (5.17) 

167686 40562 %app PQ wt C= + ⋅  (5.18) 

The calculation shows a maximum grain size bewteen the equivalent carbon mass content 

of 0.15% to 0.17% [53, 246], which corresponds with the highest frequency of transverse cracks 

index in literature.   
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The calculation of austenite grain size is carried out as the following procedure: the 

temperature and steel phase histories are first given by the experimental measurements or 

numerical modeling. The cooling rate for calculating PDAS in Eq (5.16), is the average rate 

during solidification. After the PDAS is determined and taken as the initial austenite grains size, 

the simulation of austenite grain growth starts from the temperature of totally austenite and 

continues with the given temperature history. 

 

5.3 Validation with Experimental Measurements 

A simple case is run to check the effectiveness of the model. The number and area of 

austenite grains near the surface of cast slabs with a wide range of chemical compositions are 

determined from micrograph, and parameters for the distribution and average value of grains are 

calculated by statistics software [246].  

 The simulations start from the highest temperature of a totally austenite structure, which 

is calculated and given in the initial work [246]. The initial austenite grain size is assumed to be 

~100µm, which is due to the rapid cooling near slab surfaces. Since only one measured 

temperature curve by thermocouple is available, an average cooling rate is roughly estimated to 

be ~ 5oC/s for temperatures above 1000oC as shown in Figure 5.2 [246], which is believed to be 

the decisive temperature range for austenite grain growth. This cooling rate is then 

approximately used in simulations of all steel compositions. The calculation is run until 900oC 

when austenite starts to transform, and the influence of precipitates is ignored due to the rapid 

cooling in tests.  

The comparison of calculated results with experiments is shown in Figure 5.3. A 

reasonable agreement is observed for all steel compositions (slope=1.061). It is logic that the 

simulation will produce a little large austenite size, because an average cooling rate of 5oC/s 

overestimates the real rate at high temperature, as shown in Figure 5.2, which is believed to be 

most important for grain growth under kinetic consideration. More validations of this model with 

the presence of precipitates in continuous casting are given elsewhere [53].   

 

 

 

 



149 
 

5.4 Tables and Figures 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 5.1: Schematic of the interaction of a spherical particle with a grain boundary 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Distorted boundary 

Rigid planar boundary 
Pinning particle 

Grain A Grain B 

× 

× 

× 

× 
×

× 

× 

× 

× 

× 

r θ

2πrcosθ 

σ sinθ 



150 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2: Estimation of an average cooling rate from measured temperature of shell surface 

[246] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

average cooling rate ~5oC/s 
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Figure 5.3: Comparison of calculated and measured austenite grain size [246]   
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CHAPTER 6 

CALCULATION FOR PRACTICAL STEEL GRADE IN CONTINUOUS CASTING 

 

The suggested models in the previous chapters are combined together to simulate 

precipitate formation and grain growth for practical steel grade in continuous casting process. 

Instead of isothermal holding for most previous validation cases, a heat transfer model, CON1D, 

is first applied to calculate the histories of temperature and steel phases across the entire slab 

region in the process. Then the equilibrium model in chapter 2 and kinetics models in chapter 3-4 

are applied to simulate the evolution of precipitate fraction and size distribution, and finally 

austenite grain growth model in chapter 5 is applied to calculate the grain size evolution under 

the presence of precipitates for the chosen positions of the slab. 

After exiting the mold, the continuous casting slab usually passes through a secondary 

cooling region, with nozzles that continuously spray water against the solid steel shell between 

the rolls. This often causes a heavy temperature oscillation for the slab surface. The surface 

temperature may drop to a favorable temperature range of precipitation on PTT diagram, and 

even below the transformation temperature of austenite to ferrite to cause a quick precipitation. 

On the other hand, the interior of slab does not account this kind of temperature oscillation or 

undercooling, which makes the precipitation and grains quite different compared with slab 

surface. A simulation of these phenomena across the slab is important to understand the effects 

of continuous casting process, and to explain the possible formation of transverse surface cracks. 

 

6.1 Introduction of Continuous Casting Process 

After it became commercially feasible in 1960, the continuous casting quickly became 

popular and widespread in steel industry. Comparing with the conventional ingot making, the 

continuous casting process casts molten steel directly into the different semi-finished shapes as 

possible to end products, such as round solid billets, round hollow billets and beam blanks, 

bypassing the steps of soaking or blooming, on a continuous basis. It thus improves product yield 

and resource conservation by reducing equipment, labor, energy and time requirements, and 

promotes the progress of the steel industry as a modern manufacturing industry. Today, 

continuous casting is the most common process in steel production, and accounts for more than 

90% of the world’s output, including almost all varieties of steel grades. 
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During its development, continuous casting of steels had encountered several 

breakthroughs to resolve several major technical difficulties and reach the modern process. In 

1934, Junghans suggested a vertical mold oscillation to prevent the solidified shell from sticking 

to the mold and causing breakout of molten steel. A curved circular-arc-type machine was 

introduced by June in 1963, instead of an initial vertical machine. It overcame the required long 

time for the complete solidification of steels and achieved a much higher productivity. A 

historical overview of continuous casting development is given elsewhere [247]. 

The schematic of a modern continuous casting process is shown in Figure 6.1 [248]. 

Fluid flow in continuous casting process is driven by gravity. The purified liquid steel was first 

poured in a large ladle, which is placed above the casting machine. The steel flows out from the 

open bottom of the ladle into a reservoir called as tundish, which acts as a buffer between ladle 

changes to make the process continuous without interruption. The liquid steel next flows through 

a refractory submerged entry nozzle into a bottomless, water-cooled and oscillating copper mold. 

The flow out of the tundish is controlled by either a stopper rod within the tundish or a slide-gate 

mechanism within the entry nozzle.  

The steel solidifies soon after contacting with the mold walls, forming a thin shell of solid 

steel, which is withdrawn continuously with a rate of so-called casting speed. After exiting the 

mold, the steel travels through a region known as secondary cooling, which consists of several 

zones of nozzles that continuously spray water against the steel shell between the driving rolls 

that lead the steel strand from a vertical to a horizontal configuration. Once the steel strand is 

completely solidified at a distance below meniscus, called as metallurgical length, a torch cuts 

the steel strand into separate slabs of desired length. The section of steel continues to further 

processing, such as reheating, homogenization, hot-rolling, coiling or other required processes to 

get the final product.  

A recent new technology of continuous casting is the Compact Strip Production (CSP), 

which is characterized by casting a slab of around ~50mm at a speed of 5m/min or higher. 

Because of a reduction of slab thickness, shorter spray zones, fast solidification rate, less 

segregation and finer as-cast grain size are expected. Combined with higher thermal strains and 

strain rates, the process greatly changes the metallurgical behavior, such as strain-induced 

precipitation, grain growth, grain boundary embrittlement and susceptibility to transverse cracks 
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[249]. There is a strong need for accurate predictive tools to help design cooling practices to 

avoid cracks and to maximize surface quality. 

The purpose of this chapter is to integrate all available models together to simulate the 

precipitate formation and grain growth for an industrial steel grade in a practical continuous 

casting process. The calculated results are then compared with available experimental 

measurements.   

 

6.2 Experimental Measurements 

Recenly, Dyer et al measured the precipitated fractions and size distribution to find the 

effect of microalloy precipitation and dissolution during direct slab production relative to the 

position within slab and alloy composition. Three steel compositions of different niobium 

addition and the surface, columnar and centerline of slab are explored to incorporate the 

influence of different temperature histories, solidification rates and alloy segregations [250, 251]. 

A 1200mm×50mm thin slab of HSLA steel was continuously cast at Nucor-Steel-

Hickman at a speed of 5.0m/min. This “high-Nb” steel (as designated in the prior publication 

[251]) had weight composition of 0.031% C, 1.039% Mn, 0.194% Si, 0.031% Ni, 0.032% Cr, 

0.01% Mo, 0.003% Ti, 0.046% Nb, 0.001%V, 0.031% Al, 0.006% N, 0.003% S, 0.012% P. The 

mold working length was 850mm, and the water spray cooling zones spanned from mold exit to 

6m below the meniscus. The typical recorded slab surface temperature was 900oC at exit from 

the last support roll in the spray zone.  The slab then travels a few meters past a cutoff shear, and 

was hot charged at 900-1100oC surface temperature into a several-hundred-meter-long reheating 

furnace with an internal temperature of 1150oC.  

The slab samples were full-width crops of ~700mm length taken either at the shear or 

prior to the hot-rolling mill.  Each cropped steel sample was rapidly quenched in agitated water 

to room temperature, and cut into small pieces, 300mmx125mmx50mm.  The samples were first 

dissolved in two stages to separate and measure the precipitated Nb from the Nb in solution by 

electrochemical extraction. Then, the precipitates were counted in selected sections and 

compositions were measured to determine the size distributions of Nb-bearing precipitates on 

TEM micrographs of carbon replicas. 

Electrochemical extraction and inductively coupled plasma atomic emission spectrometry 

(ICP-AES) techniques were used to quantify the amounts of niobium in solution and precipitate 
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form. Three different volumes were cut from each slab sample and identified as chill zone near 

the slab surface/edge (S), columnar zone at medium depth (M), and equiaxed zone near the slab 

center (C), as shown in Figure 6.2. Three different trial heats were tested, containing low, 

medium, or high niobium additions, and with similar levels of carbon, manganese, silicon, 

aluminum and nitrogen.  Each steel specimen was dissolved in an aqueous solution of 5% 

hydrochloric acid and 3% tartaric acid and filtered to separate the dissolved steel matrix from the 

alloy precipitate. The precipitate residue and filter papers were then dissolved in a second 

solution prior to chemical analysis. After chemical extraction and precipitate dissolution, each 

solution was diluted with deionized water prior to ICP-AES. The sum of the two niobium 

amounts (in solution and precipitate form) gives the total niobium measured. Good 

reproducibility was found to demonstrate accuracy of the experiments [250].  

The precipitate size distributions and compositions were then measured by TEM and 

EDS on carbon extraction replicas from selected samples. A typical precipitate particle 

distribution for the high-Nb steel at the furnace exit that is measured and modeled in this work is 

shown in Figure 6.3. The length and width of each precipitate particle are found using an 

arbitrary line measurement function of imaging pictures to calculate its area. Five carbon replicas 

were made for each specimen, and analyses of at least three replicas, were completed to ensure a 

general observation for each alloy, process location and solidificaiton region. Approximately 200 

particles were counted from ten fields of view per condition, to obtain particle size distributions. 

At least ten precipitates were analyzed using EDS analysis for each processing considiton and 

solidification region. The cross-sectional area of the each precipitate was used to calculate its 

“equivalent diameter”, by assuming that the particle is perfectly circular [251]. 

The measurements show that the extent of precipitation increased with increasing 

niobium addition. The most niobium precipitation occurred at the slab surface along the edges of 

the thin slab, where dissolution subsequently occurs during reheating and equalization in the 

tunnel furnace. The columnar region comprised the bulk of the slab volume, and exhibited 

minimal alloy segregation and the lowest amount of precipitated niobium. The slab edge 

exhibited relatively small (10-30nm) irregular-cuboidal and cuboidal precipitates, and the 

columnar and centerline regions contained larger irregular-cuboidal and cuboidal precipitates. 

Further details of these experiments are provided elsewhere [250, 251].   
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6.3 Simulation Results 

The model is applied here to predict temperature, precipitation, and grain size for the 

processing conditions of the reheated and quenched high-Nb steel samples for which 

measurements were available. The surface/edge (S), middle/columnar (M) and center (C) 

locations in the experiments are chosen as 0mm, 12.5mm and 25mm from the slab surface in the 

simulation. The modeling procedure follows the flow chart presented in Figure 1.7. 

 

6.3.1 Heat Transfer 

In this work, the transient heat conduction equation is solved in the mold, spray regions, 

reheating furnace and quenching water of a continuous steel slab caster using the CON1D 

program [252]. This finite-difference model calculates one-dimensional heat transfer within the 

solidifying steel shell coupled with two-dimensional steady-state heat transfer in the mold and a 

careful treatment of the interfacial gap between the shell and mold. Below the mold, the model 

includes the temperature and spatially-dependent heat transfer coefficients of each spray nozzle, 

according to the local water flow rates, and the heat extraction into each support roll. After 

exiting the last spray zone, subsequent reheating or quenching stages can be added by restarting 

the simulation using an “initial” temperature profile from any desired previously-calculated time. 

A non-equilibrium microsegregation model, based on an analytical Clyne-Kurz equation 

developed by Won and Thomas [253], was applied to compute the liquidus temperature, solidus 

temperature and steel phase fractions. Complete details of CON1D are provided elsewhere [252]. 

The pouring temperature is assumed to be 1553oC. Starting with the heat transfer 

coefficient boundary conditions of [254], The water spray heat transfer rates are adjusted in order 

to match the recorded caster exit temperature of 900oC and tunnel furnace entry temperature of 

900-1100oC. The casting speed is changed to 11.2m/s to match the time of 20 minutes in 225m-

long reheating furnace. A “restart run” is performed to continue reheating of the sample in the 

tunnel furnace and quenching in agitated water, by taking the initial condition from the final 

results at the end of last stage. Natural convection with air is taken as 8.7W·m-2·K-1, and the heat 

transfer coefficient for the agitated water is 2000W·m-2·K-1.  

Figure 6.4 shows the calculated equilibrium steel phase evolution with temperature, and it 

follows as liquid→ δ ferrite→ austenite→ α ferrite (and Fe3C) with decreasing temperature. The 
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liquidus and solidus temperatures are calculated as 1525.4oC and 1504.8oC, and the δ-ferrite is 

completely transformed to austenite at temperature of 1381.8oC. 

The predicted temperature histories inside the slab are shown in Figure 6.5. At the slab 

surface, the temperature decreases quickly in the mold and oscillates in water spray cooling 

zones. Surface temperature increases after exiting the caster due to heat supplied from the slab 

interior, which tends to equilibrate the temperature distribution. Temperature decreases again 

slightly due to air cooling, prior to entering the reheating furnace.  After an initial increase, 

temperature stays constant through most of the reheating furnace, and sharply decreases when 

the cropped sample is water quenched. In the slab interior, as half thickness and center, the 

temperature decreases slowly in the mold and water spray cooling zone, and continues to 

decrease due to air cooling after the caster. Like the surface, internal temperature slightly 

increases to a constant in the reheating furnace, and finally sharply decreases by water quenching. 

 

6.3.2 Equilibrium Precipitation 

The equilibrium precipitation model is used to predict equilibrium phases as a function of 

temperature, based on the given steel composition and the matrix phases corresponding with the 

temperatures and predicted using CON1D. The results are graphed in Figure 6.6 for the steel 

phase fractions in Figure 6.4.  Solubility products and Wagner interaction coefficients for the 

liquid, ferrite and austenite are tabulated elsewhere [87], and the effect of the small amount of 

Fe3C (<0.4%) is ignored.   

For this steel, MnS starts to precipitate at 1508oC in δ-ferrite, and then partly dissolves 

during the δ-ferrite to austenite transformation because of a higher solubility limit of MnS in 

austenite. This is consistent with experimental observations of large sulfide precipitates, which 

were not included in the size distributions counted in experiments [251].  With decreasing 

temperature, (Ti,Nb,V)(C,N) precipitates from 1288oC and AlN precipitates from 1038oC in 

austenite as shown in Figure 6.6(a). The precipitation of AlN is delayed by the formation of 

(Ti,Nb,V)(C,N) because part of its required nitrogen has been consumed. The equilibrium 

dissolved mass concentrations of niobium and titanium, which is represented as [Nb]eq and [Ti]eq 

are also shown in the same figure. These data are input into the transient precipitation model to 

compute equilibrium number density of single pseudomolecules in Eq. (3.109).  
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  Figure 6.6(b) shows the composition changes expected in the mixed (Ti,Nb,V)(C,N) 

precipitates. At high temperature, TiN is the most thermodynamically stable compound, so the 

mixed precipitates are mainly TiN according to the thermodynamic model employed for these 

calculations. With decreasing temperature, more carbides form as they become stable and there 

is much more carbon than nitrogen in steel. Interestingly, the NbN fraction increases, then 

decreases, with decreasing temperature, and reaches a maximum at ~1050oC.  Below 650oC, 

NbC0.87 comprises over 86% of the (Ti,Nb,V)(C,N). The fractions of TiC, VN and V4C3 are 

always small because these compounds are relatively less stable, which can be often ignored in 

kinetic precipitation simulation. 

 

6.3.3 Transient Precipitation 

Results from the heat transfer and equilibrium models are used in the transient 

precipitation model to predict the evolving size distributions of precipitates in the measured 

samples. Titanium, niobium and vanadium are found to be in shortage, so limit the formation of 

(Ti,Nb,V)(C,N) precipitates, and thus the calculation of the number densities of precipitate 

particles is based on these metal elements for this given steel composition. Because the fraction 

of vanadium precipitates is found to be small by the equilibrium model, this complex precipitate 

system will be treated as two mutually-soluble phases, Ti(C,N) and Nb(C,N), by the multiphase 

kinetic model. The diffusion coefficients are based on the steel-matrix phase fractions according 

to a crude mixture rule, D=fγDγ+fαDα, and those diffusion coefficients in austenite, Dγ, and in 

ferrite, Dα, are given in Table 3.2. While this assumption is crude, it only has an influence in the 

small temperature range where the matrix is undergoing transformation. The interfacial energies 

between Nb(C,N) or Ti(C,N) and the steel matrix are taken to be constant 0.5J·m-2 and 0.8J·m-2 

as a first approximation of the results in appendix A. A constant RV=2 and 35 size groups were 

always used to cover particle radius up to ~300nm in the simulation. 

A first calculation is run for a Nb(C,N) precipitate using the single-phase precipitation 

model. The calculated particle size distributions just prior to entering the reheating furnace, at the 

end of the reheating furnace, and after quenching are shown in Figure 6.7. During casting, the 

precipitates are not stable, so their number density is a maximum for (dissolved) single 

pseudomolecules (~0.35nm in diameter) and decreases exponentially with increasing diameter.  

At the slab surface, large particles continue to grow and small particles begin to dissolve during 
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the reheating stage, which clearly shows the effect of coarsening.  In the slab interior, the 

precipitate particles are not predicted to grow much until the quenching stage, where a sharp 

increase of precipitate size is observed and explained by the austenite to ferrite transformation. 

With much higher diffusion rate and lower solubility limit, the precipitation of Nb(C,N) is 

expected to be greatly accelerated during this phase transformation. The final precipitate size in 

the centerline region is a little larger than that of the columnar region because the slower cooling 

rate there provides more time for precipitation.  

 The size distributions from the calculated Nb(C,N) results from the single-phase model 

are compared with the measurements in Figure 6.8. The prediction comes closest at the surface 

(edge), where the mean predicated particle size of 14nm compares with the measured mean of 

24nm, and the distribution shape is similar. The measurements show that particle size 

consistently increases with distance from the surface (edge), to middle (columnar) to centerline 

regions. The calculation fails to show this trend. The calculated precipitate sizes are only ~3nm, 

which is clearly much smaller than the measurements for the slab interior, which are 72nm for 

columnar region and 91nm for centerline.  

The very small precipitate size of Nb(C,N) in slab interior predicted by the single-phase 

model suggests that the low supersaturation cannot provide enough driving force for niobium to 

precipitate before quenching. An underestimation of the measured size distribution is maybe 

explained by the mutual solubility of Nb(C,N) with much more stable TiN, which promotes 

precipitation in the reheating furnace or even before reheating at a much higher temperature in 

austenite.  Newly formed Nb(C,N) can precipitate on the surface of large Ti-bearing precipitates 

to further form coarsened particles. This is consistent with the EDS detection of titanium in most 

of the larger precipitates in the experiments [251].   

The calculated particle size distributions assuming two different precipitate phases, 

Ti(C,N) and Nb(C,N), which are mutually soluble,  by the multiphase model are shown in Figure 

6.9. During casting, some fine precipitates have been found. The slab surface contains the 

smallest size precipitates because of its lower temperature and corresponding higher 

supersaturation. Significant particle coarsening is observed at all locations during reheating, 

where large particles grow, while the small ones shrink. During quenching, there is not enough 

time for coarsening of large particles, but more fine particles form due to a further precipitation 

of the remaining solutes in the matrix. The slab surface always shows smaller precipitate size 
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than that of slab interior, because the lower temperatures before reheating have caused a high 

supersaturation to generate more fine precipitates at surface. In conclusion, a small addition of 

0.003% Ti causes an important change of precipitate behaviors, which agrees with the EDS 

results showing that Ti always exists in the precipitate particles measured [251]. 

A comparison of the measured size distributions with the calculated (Ti,Nb)(C,N) results 

from the multiphase model are shown in Figure 6.10. The multiphase precipitation model greatly 

increases the calculated precipitate size and gives a much closer match with the measurements. 

The calculated precipitate diameter has a magnitude of around 20-50nm, which matches 

reasonably with the measurements at slab surface, but still underpredicts the measurements at the 

slab interior.  The trend of increasing size from surface to middle to center agrees with the 

measurements. 

The final molar fractions of Ti/(Nb+Ti) contained in all of the different-sized particles is 

shown in Figure 6.11. This fraction is only larger than 0.5, indicating Ti-enrichment, for very 

large particles. For very small size, it is close to zero, which means that niobium precipitates are 

dominant in the small size range. A peak at the intermediate size range of 10-20nm is likely 

caused by secondary precipitation during the final quenching stage for sample acquisition, when 

enough supersaturation is sharply provided that precipitate nucleation occurs without difficulty. 

The values of these peaks can be compared with the molar fraction of 0.112 in the recorded steel 

composition.  

The calculated amounts of precipitated niobium during casting, transfer, reheating, and 

quenching of the thin-slab samples is shown in Figure 6.12.  The predictions are compared with 

experimental measurements in the final quenched samples. The precipitate diameter used to 

define the size distributions is truncated at 4nm, according to the estimated resolution limit of the 

electrochemical extraction experiment. At the slab surface, Nb starts to precipitate during the 

casting stage and reaches a maximum at the end of spray cooling. This precipitated Nb then 

mainly redissolves during the transfer stage due to reheating from the slab interior.  A tiny peak 

is observed near the end of the transfer stage, owing to a slight cooling of the surface prior to 

entering the reheat furnace. In the reheating furnace, Nb precipitates continue to dissolve due to 

the increasing temperature, as expected, which causes the precipitated Nb to continue to decrease 

slightly during reheating. In the slab interior, Nb starts to precipitate in the spray cooling zones 

when the solubility of (Ti,Nb)(C,N) is exceeded, and a minor dissolution of Nb is found to occur 
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during reheating. The precipitated amount of Nb is observed to sharply increase during 

quenching, due to the austenite to α-ferrite transformation. Because the slab interior is cooled 

slower than the slab surface during quenching, more niobium precipitated in the slab interior. 

The calculations match closely with the fractions measured at slab surface, but predict higher 

values at the slab interior. The predicted fraction increase from the surface to the centerline is 

just opposite to the measurements. 

The mismatches with size measurements may arise for many different reasons.  

Segregation likely causes local enrichment of the solute concentration field during solidification, 

which is greater towards the slab interior, when macrosegregation is considered. A calculation 

for similar temperature profiles has been done, and the precipitate size in the slab interior is 

shown to increase due to segregation [255]. In addition, diffusion is much faster along the grain 

boundaries than in the steel matrix, which could cause a larger precipitate size than predicted, but 

is not considered in the current work. MnS is likely to form in liquid during solidification due to 

heavy segregation of sulfur, leaving large MnS particles to act as cores for heterogeneous 

nucleation and leading to larger precipitates. 

The mismatch may be also caused by inaccurate temperature predictions since no reliable 

measurement is available, and the heat transfer model CON1D has not been validated for this 

caster. The predicted temperature might be a little low, leading to overprediction of the 

precipitated amount. The experiments perhaps have uncertainties themselves. Small particles 

could easily flow through the filter and escape, so that the precipitated amount could be 

underestimated. Indeed, it is likely that particle agglomeration is needed to explain why the 

measurement is as large as it is.  The center may be quenched slow, as predicted in calculation. 

But the center and surface sample regions may alternatively have been taken from the exposed 

surface, and thus experienced similar rapid cooling rates.  

Although water quenching is generally thought to be an effective tool to “lock-in” the 

precipitate properties at high temperature, the current simulation suggests that this may not 

always be true, especially for the inside of thick samples. This is because precipitation is greatly 

accelerated during the γ→α phase transformation due to the much lower solubility limits and the 

much higher diffusion rates in ferrite [149, 150].  This agrees with the findings of Simoneau et 

al , who pointed out that a significant fraction of the remaining niobium will precipitate during 

the γ→α transformation, even for cooling rates as high as 100oC/s [21]. Thus, it is important that 
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minimum-sized samples be taken from an exposed surface of a cropped sample, and that the 

actual sample location and cooling conditions are recorded and taken into account via modeling 

during the analysis phase. 

 

6.3.4 Grain Growth 

The austenite grain growth model in chapter 5 is applied to calculate the evolution of 

grain size. The PDAS for surface, columnar and centerline regions are determined as 192µm, 

470µm and 585µm separately according to Eq. (5.16) and cooling rates of 470oC/s, 5.66oC/s and 

1.96oC/s from CON1D results. The calculations start from the temperature of 1381.8oC when 

austenite is completely transformed.  

The calculated histories of austenite grain size at different locations are shown in Figure 

6.12. The smallest grain size is found in the slab surface due to its much higher cooling rate and 

lower temperature relative to elsewhere in the casting. The grain size of the columnar region is 

predicted to be higher than that of the centerline because it transforms to austenite earlier and has 

more time to grow. Without consideration of precipitates, the grains sizes from the surface to the 

centerline are approximately 0.58mm, 1.09mm and 0.96nm before entering the tunnel furnace. 

The grains at all locations experience enough time to grow in size considerably during reheating, 

and have similar kinetics as temperature within the slabs equilibrates. The grains stop growing 

shortly after quenching because of the quickly decreasing mobility of grain boundaries with 

lowing temperature. All of the austenite grains have a final size of ~ 2.5mm after reheating and 

quenching at all 3 locations. In the presence of precipitates, grain growth is completely inhibited 

once the grain becomes larger than the critical size for precipitate pinning, which is predicted by 

Eq. (5.9) for the calculated size distributions of (Ti,Nb)(C,N) from the multiphase model. By 

safely assuming that precipitates with radius larger than 2nm can exert pinning effect, the 

calculations clearly show that the precipitates are effective to inhibit the grain growth at all 3 

locations during reheating, with final predicted sizes of 0.445mm, 1.013mm, 0.905mm for the 

slab surface, middle, and center. The limiting grain sizes predicted by Eq. (5.9) are also plotted 

in Figure 6.12. They sharply decrease once precipitates start to form, and slightly increase during 

reheating as coarsening of the precipitates lowers their effectiveness. A decrease of the limiting 

size is observed at the beginning of quenching because of the formation of some new fine 

precipitates, which are most effective to inhibit grain growth. Since the limiting grain sizes are 
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smaller than their real sizes, grain growth stops, and the calculated grain sizes are all kept 

constant during reheating and quenching. These grain-size refinements due to precipitate pinning 

are generally beneficial to improve properties of the final product after rolling.  

 

From these results of precipitation and grain growth, the ductility can be determined by 

empirical formulae from experiments. For high Mn (1-1.4%) steels with S levels larger than 

0.005%, Mintz suggested that RA is a function of grain size, interparticle spacing, precipitate 

size and strain rate [59], as follows 
1/ 2 1/ 2Min. RA% 700 (1 4.3 ) 20(log 2.5)D s ε− −= − + +  (6.1) 

where D is grain diameter in µm, s is the sum of interparticle spacing and particle diameter of 

precipitate in nm, and ε  is the strain rate in s-1. An increase of precipitated amount or a decrease 

of precipitate size both causes the value of s to decrease, thus a lower value of RA is predicted. 

Other relationships between RA and steel composition were also given in previous work [57].  

The strain to fracture, or the critical strain is related to the RA values (%) by the 

following equation [256] 

100ln
100c RA

ε ⎛ ⎞= ⎜ ⎟−⎝ ⎠
 (6.2) 

The strain and strain rate on the slab surface are reported to be roughly 2% and 10-3-10-4/s 

in conventional continuous casting [257]. For this range of strain rate and a austenite diameter of 

500µm, the minimum RA predicted by Eq. (6.1) is always smaller than 20% for any amount and 

size of precipitates. Transverse cracks might form with such a low docility. 

A better prediction of crack formation requires a complete thermal-stress analysis. The 

susceptibility to transverse cracks could be determined by checking whether the strain is larger 

than the critical value at locations of interest. This could offer a framework for the development 

of better quality control for steel processes in the future. In practical continuous casting 

processes, the straightening temperature should be chosen to be outside the region of low 

ductility, which is greatly affected by precipitate formation. 
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6.4 Tables and Figures 

 

 
 
 

Figure 6.1: Schematic of continuous casting process 
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Figure 6.2: Solidification regions and sample orientations within cast slab [250, 251] 
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Figure 6.3: TEM analysis of precipitates in the slab edge/surface sample quenched after reheat 

furnace exit [251] 
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Figure 6.4: Evolution of phase fractions with temperature for experimental steel   
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Figure 6.5: Calculated temperature history in continuous casting 
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(a). Precipitate phases and amounts 

 

 
 

(b). Molar fractions in mixed (Ti,Nb,V)(C,N) precipitates 

 
 

Figure 6.6: Equilibrium calculation of high Nb steel 
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Figure 6.7: Calculated particle size distribution evolution of Nb(C,N) during processing by 

single-phase model 
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Figure 6.8: Comparison of size distributions from measurement and calculated Nb(C,N) results 

by single-phase model 
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Figure 6.9: Calculated particle size distribution evolution of (Ti,Nb)(C,N) during processing by 

multiphase model 
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Figure 6.10: Comparison of size distributions from measurement and calculated (Ti,Nb)(C,N) 

results by multiphase model 
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Figure 6.11: Calculated molar fraction of Ti/(Ti+Nb) for different size of (Ti,Nb)(C,N) particles 

by multiphase model after reheating and quenching 
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Figure 6.12: Calculated and measured precipitated fraction of Nb of slab 
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Figure 6.13: Grain size prediction showing the effectg of precipitates 
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CHAPTER 7 

SUMMARY AND FUTURE WORK 

 

A comprehensive set of models has been developed to determine precipitate formation 

during steel processing for the given compositions and cooling practice, based on a quantitative 

prediction of the microstructure evolution. They include an equilibrium precipitation model to 

predict the amounts and compositions of the precipitates at equilibrium, and kinetic models for 

single-phase and multiphase precipitation based on a PSG method to predict the amount and size 

distribution evolution of the precipitates. 

The thermodynamic solubility-product-based equilibrium model has been first applied to 

predict equilibrium precipitation behavior in microalloyed steels. This model calculates the 

solubility limits of 18 common precipitates, including the Wagner interaction effect, mutual 

solubility effect, and complete mass conservation of all 13 alloying elements during precipitation. 

The model is validated by matching with analytical solutions, the commercial package JMatPro, 

and experimental measurements of precipitate amounts, types and compositions. 

The equilibrium precipitation model demonstrates the impact of mutual solubility. For 

mutually exclusive precipitates, the formation of a precipitate phase may delay the formation and 

decrease the equilibrium amount of other precipitates when they share some alloying elements. 

However, this result tends to reverse for mutually soluble precipitates, which experience 

decreased equilibrium activities.  

For modeling kinetic behavior, a new, efficient PSG population-balance method for 

diffusion-controlled single-phase precipitation has been developed. The method features 

geometrically-based thresholds between each size group, reasonable estimates of border values 

in order to accurately include intra-group and inter-group diffusion, and an efficient implicit 

solution method to integrate the equations. The accuracy and exponentially tremendous 

computational time-efficiency of this method have been validated by comparing with exact 

solutions of the original population balance equations. It enables accurate and realistic modeling 

of non-equilibrium precipitation processes at reasonable computational cost.  

The new PSG method can simulate incubation, nucleation, growth, and coarsening as one 

continuous and competing process over a wide size range, with no explicit laws or fitting 

parameters required.  This method is applied to compute the precipitated fraction, size 
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distribution and PTT diagram, and show encouraging agreement with previous experimental 

measurements. Precipitation in ferrite is found to be greatly accelerated due to the lower 

solubility limit and higher diffusion rate in ferrite. The predicted time evolution of the precipitate 

size distribution results exhibit trends of critical size, number, and slope that are consistent with 

classical nucleation, growth, and coarsening theories. 

The kinetic model of single-phase precipitation is generalized to predict multiphase 

precipitation to incorporate more realistic heterogeneous complex/mixed precipitates. The 

corresponding population balance and PSG equations are developed, including mutually-

exclusive precipitates and mutually-soluble precipitates. The movement of each precipitate is 

tracked to conserve its mass. The models are validated with extreme cases, and by matching with 

exact solutions of the population balance equations. 

From the result of the previous precipitation model, a kinetic model for austenite grain 

growth is applied to predict the evolution of austenite grain size in the presence of precipitates, 

and the inhibiting effect of the precipitates on grain growth. This model starts when austenite 

first forms, assuming that initial grain size equals the primary dendrite arm spacing, and 

calculates the evolution of average austenite grain size with grain boundary pinning according to 

the precipitate size distribution.  

Combined with a transient macroscopic heat transfer model, CON1D, which is applied to 

calculate the histories of temperature and steel phases within the entire slab for commercial steel 

grades and practical casting processes, the models developed in this work are applied together to 

simulate the evolution of precipitate composition, size distribution and grain size. The 

predictions compare with experimental measurements in samples from the continuous cast 

product. The calculation results of (Ti,Nb)(C,N) by multiphase model shows that more stable 

TiN phases precipitate first at high temperature, and acts as heterogeneous nucleation and growth 

sites for the further precipitation of niobium. Compared with results of the single-phase model 

for Nb(C,N), the calculated multiphase precipitate size distribution is much larger.  This 

calculated precipitate size distribution matches the increasing trend of precipitate size from the 

slab surface to the center, and are much closer to experimental measurements. The precipitates 

are predicted to inhibit austenite grain growth in the reheating furnace, which may be beneficial 

to rolled product. The potential importance of precipitation during specimen acquisition 

(associated with quenching) is highlighted by the model predictions. 



179 
 

This powerful methodology has a broad range of potential applications in predicting 

precipitate formation and grain growth during thermal processing of metal alloys. By further 

incorporation of segregation models, stress analysis, empirical formulae of ductility and failure, 

the models in this work would take another step towards the fundamental prediction and 

prevention of important practical problems such as the formation of transverse cracks in 

microalloyed steel. 

In summary, new fundamental models of equilibrium and non-equilibrium precipitation 

have been developed and extensively validated. These models, combined together with heat 

transfer, grain growth, and other models, are successfully applied to predict precipitation and 

grain size evolution during thermal processing of microalloyed steel. This work is a first step to 

quantitatively predict microstructure, material properties such as ductility, and crack formation 

during materials processing. To achieve this, more improvements and further validation of the 

models of this work are still necessary.  

Future work to improve the model is suggested to include: 

1). Microsegregation may be important, which could cause more precipitation to occur in the 

area of highly enriched solutes both during and after solidification. The precipitate growth under 

this circumstance is greatly enhanced by rapid liquid-phase diffusion, and perhaps also by 

collision, so a much larger precipitate size should be obtained. The collision PSG model 

suggested in section 3.2.1 is reasonable to be added into the set of models. The remaining 

concentrations of elements in solid are also reduced after precipitation, which should be tracked 

and input to calculate the diffusion-controlled precipitation in the solid. 

2). At grain boundaries, many different phenomena cause different precipitation behavior. 

Microsegregation, increased vacancy concentration and higher diffusion rates all cause the easy 

formation of much coarsened particles. The interface energy on grain boundaries is likely very 

different from the precipitate/matrix values in this work, and the curvature effect on nearby 

concentration in the Gibbs-Thomson equation is maybe proportional to the grain size, instead of 

particle size. Both fast short-circuit diffusion along grain boundaries and the slow bulk diffusion 

of atoms from the grain interior to the grain boundaries happens simultaneously, which may 

contribute to a much larger precipitate size often observed at grain boundaries.  All of these 

make precipitation models at grain boundaries necessary.  
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3). The thermodynamic models in this work are encouraged to be combined with stress analysis, 

which would calculate the strain rate, strain and stress during the thermal processing. The 

ductility could be determined from the results of precipitate formation, grain growth and stress 

analysis by empirical formula applied at different locations. The stress/strain could be compared 

to check whether a critical value is exceeded for the calculated low ductility, to provide 

quantitative clues to prevent transverse cracks of steel slabs. 

4). Transverse cracks are mostly likely to occur under oscillation marks or near corners of slabs. 

The higher temperature due to heat flow resistance across gap there will result in a faster grain 

growth rate and a lack of precipitate pinning effect. This may cause local “recrystallization” or 

abnormal grain growth to form a large grain size and get a poor ductility. When the slabs are in 

unbending, transverse cracks may form with an overcritical tensile stress and strain. The 

calculations of temperature profile, precipitation formation and grain size under these sensitive 

locations are required to better explain this phenomenon.  

5). The methods developed in this work can be easily extended to many other material systems 

and problems. For example, the border value estimation of PSG method can be moved to cluster 

dynamics to cover a much larger size range with reasonable computation cost. Although this 

work has mainly been applied to microalloyed steel, there are no doubt that these methods can be 

applied to simulate precipitation in other systems, such as Al3Zr and Al3Sc in aluminum alloys.   
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APPENDIX A: CALCULATION OF INTERFACIAL ENERGY 

 

The experimental measurements of temperature and orientation dependent interface 

energy between precipitate and matrix are difficult and rare. The energy of an interphase 

boundary depends on many parameters, such as the atomic bonding and interfacial misfit within 

the phases, etc.  

According to Turnbull [258] and Jonas [161], the interfacial energy consists of two parts: 

a chemical part (σc) and a structural part (σst), so that 

c stσ σ σ= +  (A1) 

The chemical interfacial energy is estimated from the difference between the energies of 

bonds broken in the separation process and of bonds made in forming the interface, with only the 

nearest neighbors considered. As given by Russell [37] 

20 ( )s s
c P M

A l

E N Z X X
N Z

σ ∆
= −  (A2) 

where ∆E0 is the heat of solution of precipitates in a dilute solution in the matrix, Ns is the 

number of atoms per unit area across the interface, Zs is the number of bonds per atom across the 

interface, Zl is the coordinate number of nearest neighbors within the precipitate crystal lattice, 

and XP and XM are the molar concentrations of the precipitate-forming element in the precipitate 

(P) and matrix (M) phase respectively.  ∆E0 is estimated to equal –∆H, the heat of formation of 

the precipitate.  XP=0.5 and XP>>XM. 

Merwe [259] presented a calculation of structural energy for a planar interface.  When the 

two phases have the same structure and orientation, but different lattice spacing, the mismatch 

may be accommodated by a planar array of edge dislocations.  Including the strain energy in 

both crystals, σst is given as 
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where e
Mc  and e

Pc  are the nearest-neighbor distance across the interface, which are estimated 

from the lattice parameters cM, cP and interface orientations, c  is the spacing of a reference 

lattice across the matrix/precipitate interface. µM, µP and µI are shear moduli in the matrix (M), 

precipitate (P) and interface (I) respectively; νM and νP are Poisson’s ratios. δ is the lattice misfit 

across the interface. 

The crystallographic relationships between the f.c.c. (TiN, TiC, NbN, NbC, VN, VC, 

MnS) and h.c.p. (AlN) precipitate, and steel matrix austenite phase (f.c.c.) or ferrite phase (b.c.c.) 

are chosen as 

Highest planar density orientation: . . .(111) //(111)f c c Feγ −  [37, 161] 

Baker-Nutting orientation: . . .(100) //(100)f c c Feα−  [260] 

Shoji–Nishiyama orientation: . . .(0001) //(111)h c p Feγ −  [261, 262] 

Burgers orientation: . . .(0001) //(110)h c p Feα−   [263] 

For γ-Fe (111) plane, 3Fe
sZ γ − =  and 24 /( 3 )Fe

s FeN cγ
γ

−
−= .  For α-Fe, (100) plane 

4Fe
sZα− = , 21/Fe

s FeN cα
α

−
−= , and (110) plane 4Fe

sZα− = , 22 /Fe
s FeN cα

α
−

−= . For both f.c.c. and 

h.c.p. precipitate structures, 12lZ = . The elastic properties and heat of formation of iron and 

various precipitates are listed in Table A1 and A2. The lattice parameters of austenite and ferrite 

are ( ) 0.357Fec nmγ − =  and ( ) 0.286Fec nmα− =  [36], and of various precipitates are listed in Table 

2.1.  

The calculated interfacial energies between different precipitates and steel matrix are 

shown in Figure A1. It shows that interfacial energy decreases slightly as temperature increases 

because of lower heat of formation and shear modulus.  

Some errors are introduced by this model itself. For example, complete interactions 

between chemical bonds of iron, metal and interstitial element of precipitate phase are not 

considered. Only bonds of nearest neighbors are counted, which ignores the influence of second 

nearest neighbors and others with longer distance. The dislocation may relax lattice mismatch, 

and reduce the structural part of interface energy, which is not expressed in this model. But the 

result of this model still gives a reasonably first approximation when the available measurements 

are not available. 
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Table A1: Elastic properties of iron and various precipitates 

Parameters Values Ref. 

µγ-Fe (Mpa) [ ]48.1 10 1 0.91( 300) /1810T× − −  [264] 

µα-Fe (Mpa) [ ]46.92 10 1 1.31( 300) /1810T× − −  [264] 

µTiN (Mpa) 421.3 10×  [265] 

µTiC (Mpa) [ ]419.3 10 1 0.18( 300) / 3523T× − −  [264] 

µNbN (Mpa) 415.6 10×  [266] 

µNbC (Mpa) [ ]413.4 10 1 0.18( 300) / 3613T× − −  [264] 

µVN (Mpa) 415.9 10×  [266] 

µVC (Mpa) [ ]412.7 10 1 0.27( 300) / 2921T× − −  [264] 

µMnS (Mpa) 44.5 10×  [269] 

µAlN (Mpa) 412.7 10×  [265] 

νγ-Fe 0.29 [168] 

να-Fe 0.29 [168] 

νTiN 0.21 [265] 

νTiC 0.204 [268] 

νNbN 0.27 [266] 

νNbC 0.194 [268] 

νVN 0.25 [266] 

νVC 0.26 [268] 

νMnS 0.30 [267] 

νAlN 0.23 [265] 
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Table A2: Heat of formation of various precipitates 

Precipitate –∆H (KJ·mol-1) Ref. 

TiN 2 7 2356.77 5.04 10 2.98 10 1210 /T T T− −− × − × −  [269] 

TiC 2 6 2206.77 5.57 10 4.07 10T T− −− × + ×  [268] 

NbN 2235.1 3.90 10 ( 298.15)T−− × −  [270] 

NbC 2 6 2157.76 4.54 10 3.84 10T T− −− × − ×  [268] 

VN 2 6 2233.49 4.39 10 5.61 10 815.7 /T T T− −− × − × −  [269] 

VC 2 6 2116.50 3.84 10 6.90 10 815.7 /T T T− −− × − × −  [271] 

MnS 2 5 2203.4 1.114 10 1.73 10T T− −+ × − ×  [272] 

AlN 2 6 2341.32 4.98 10 1.12 10 2813 /T T T− −− × − × −  [268] 
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Figure A1: Calculated interfacial energies associated with various precipitates 
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